Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,752 Bytes
779c9ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
# From the great https://github.com/cloneofsimo/minRF/blob/main/dit.py
# Code heavily based on https://github.com/Alpha-VLLM/LLaMA2-Accessory
# this is modeling code for DiT-LLaMA model
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers import ModelMixin, ConfigMixin
from diffusers.configuration_utils import register_to_config
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
class TimestepEmbedder(nn.Module):
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half) / half).to(t.device)
args = t[:, None] * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype=next(self.parameters()).dtype)
t_emb = self.mlp(t_freq)
return t_emb
class LabelEmbedder(nn.Module):
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = int(dropout_prob > 0)
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0]) < self.dropout_prob
drop_ids = drop_ids.cuda()
drop_ids = drop_ids.to(labels.device)
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
class Attention(nn.Module):
def __init__(self, dim, n_heads):
super().__init__()
self.n_heads = n_heads
self.n_rep = 1
self.head_dim = dim // n_heads
self.wq = nn.Linear(dim, n_heads * self.head_dim, bias=False)
self.wk = nn.Linear(dim, self.n_heads * self.head_dim, bias=False)
self.wv = nn.Linear(dim, self.n_heads * self.head_dim, bias=False)
self.wo = nn.Linear(n_heads * self.head_dim, dim, bias=False)
self.q_norm = nn.LayerNorm(self.n_heads * self.head_dim)
self.k_norm = nn.LayerNorm(self.n_heads * self.head_dim)
@staticmethod
def reshape_for_broadcast(freqs_cis, x):
ndim = x.ndim
assert 0 <= 1 < ndim
# assert freqs_cis.shape == (x.shape[1], x.shape[-1])
_freqs_cis = freqs_cis[: x.shape[1]]
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return _freqs_cis.view(*shape)
@staticmethod
def apply_rotary_emb(xq, xk, freqs_cis):
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis_xq = Attention.reshape_for_broadcast(freqs_cis, xq_)
freqs_cis_xk = Attention.reshape_for_broadcast(freqs_cis, xk_)
xq_out = torch.view_as_real(xq_ * freqs_cis_xq).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis_xk).flatten(3)
return xq_out, xk_out
def forward(self, x, freqs_cis):
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
dtype = xq.dtype
xq = self.q_norm(xq)
xk = self.k_norm(xk)
xq = xq.view(bsz, seqlen, self.n_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_heads, self.head_dim)
xq, xk = self.apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
xq, xk = xq.to(dtype), xk.to(dtype)
output = F.scaled_dot_product_attention(
xq.permute(0, 2, 1, 3),
xk.permute(0, 2, 1, 3),
xv.permute(0, 2, 1, 3),
dropout_p=0.0,
is_causal=False,
).permute(0, 2, 1, 3)
output = output.flatten(-2)
return self.wo(output)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, multiple_of, ffn_dim_multiplier=None):
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
if ffn_dim_multiplier:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
def _forward_silu_gating(self, x1, x3):
return F.silu(x1) * x3
def forward(self, x):
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
class TransformerBlock(nn.Module):
def __init__(
self,
layer_id,
dim,
n_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
):
super().__init__()
self.dim = dim
self.head_dim = dim // n_heads
self.attention = Attention(dim, n_heads)
self.feed_forward = FeedForward(
dim=dim,
hidden_dim=4 * dim,
multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier,
)
self.layer_id = layer_id
self.attention_norm = nn.LayerNorm(dim, eps=norm_eps)
self.ffn_norm = nn.LayerNorm(dim, eps=norm_eps)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(min(dim, 1024), 6 * dim, bias=True),
)
def forward(self, x, freqs_cis, adaln_input=None):
if adaln_input is not None:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(
6, dim=1
)
x = x + gate_msa.unsqueeze(1) * self.attention(
modulate(self.attention_norm(x), shift_msa, scale_msa), freqs_cis
)
x = x + gate_mlp.unsqueeze(1) * self.feed_forward(modulate(self.ffn_norm(x), shift_mlp, scale_mlp))
else:
x = x + self.attention(self.attention_norm(x), freqs_cis)
x = x + self.feed_forward(self.ffn_norm(x))
return x
class FinalLayer(nn.Module):
def __init__(self, hidden_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(min(hidden_size, 1024), 2 * hidden_size, bias=True),
)
# # init zero
nn.init.constant_(self.linear.weight, 0)
nn.init.constant_(self.linear.bias, 0)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class DiT_Llama(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
embedding_dim=3,
hidden_dim=512,
n_layers=5,
n_heads=16,
multiple_of=256,
ffn_dim_multiplier=None,
norm_eps=1e-5,
):
super().__init__()
self.in_channels = embedding_dim
self.out_channels = embedding_dim
self.x_embedder = nn.Linear(embedding_dim, hidden_dim, bias=True)
nn.init.constant_(self.x_embedder.bias, 0)
self.t_embedder = TimestepEmbedder(min(hidden_dim, 1024))
# self.y_embedder = LabelEmbedder(num_classes, min(dim, 1024), class_dropout_prob)
self.layers = nn.ModuleList(
[
TransformerBlock(
layer_id,
hidden_dim,
n_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
)
for layer_id in range(n_layers)
]
)
self.final_layer = FinalLayer(hidden_dim, self.out_channels)
self.freqs_cis = DiT_Llama.precompute_freqs_cis(hidden_dim // n_heads, 4096)
def forward(self, x, t, cond):
self.freqs_cis = self.freqs_cis.to(x.device)
x = torch.cat([x, cond], dim=1)
x = self.x_embedder(x)
t = self.t_embedder(t) # (N, D)
adaln_input = t.to(x.dtype)
for layer in self.layers:
x = layer(x, self.freqs_cis[: x.size(1)], adaln_input=adaln_input)
x = self.final_layer(x, adaln_input)
# Drop the cond part
x = x[:, : -cond.size(1)]
return x
def forward_with_cfg(self, x, t, cond, cfg_scale):
half = x[: len(x) // 2]
combined = torch.cat([half, half], dim=0)
model_out = self.forward(combined, t, cond)
eps, rest = model_out[:, : self.in_channels], model_out[:, self.in_channels :]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
@staticmethod
def precompute_freqs_cis(dim, end, theta=10000.0):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end)
freqs = torch.outer(t, freqs).float()
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
return freqs_cis
def DiT_base(**kwargs):
return DiT_Llama(in_dim=2048, hidden_dim=2048, n_layers=8, n_heads=32, **kwargs)
if __name__ == "__main__":
model = DiT_Llama_600M_patch2()
model.eval()
x = torch.randn(2, 3, 32, 32)
t = torch.randint(0, 100, (2,))
y = torch.randint(0, 10, (2,))
with torch.no_grad():
out = model(x, t, y)
print(out.shape)
out = model.forward_with_cfg(x, t, y, 0.5)
print(out.shape)
|