File size: 10,752 Bytes
779c9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# From the great https://github.com/cloneofsimo/minRF/blob/main/dit.py
# Code heavily based on https://github.com/Alpha-VLLM/LLaMA2-Accessory
# this is modeling code for DiT-LLaMA model

import math

import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers import ModelMixin, ConfigMixin
from diffusers.configuration_utils import register_to_config


def modulate(x, shift, scale):
    return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)


class TimestepEmbedder(nn.Module):
    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size),
        )
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        half = dim // 2
        freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half) / half).to(t.device)
        args = t[:, None] * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        return embedding

    def forward(self, t):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype=next(self.parameters()).dtype)
        t_emb = self.mlp(t_freq)
        return t_emb


class LabelEmbedder(nn.Module):
    def __init__(self, num_classes, hidden_size, dropout_prob):
        super().__init__()
        use_cfg_embedding = int(dropout_prob > 0)
        self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
        self.num_classes = num_classes
        self.dropout_prob = dropout_prob

    def token_drop(self, labels, force_drop_ids=None):
        if force_drop_ids is None:
            drop_ids = torch.rand(labels.shape[0]) < self.dropout_prob
            drop_ids = drop_ids.cuda()
            drop_ids = drop_ids.to(labels.device)
        else:
            drop_ids = force_drop_ids == 1
        labels = torch.where(drop_ids, self.num_classes, labels)
        return labels

    def forward(self, labels, train, force_drop_ids=None):
        use_dropout = self.dropout_prob > 0
        if (train and use_dropout) or (force_drop_ids is not None):
            labels = self.token_drop(labels, force_drop_ids)
        embeddings = self.embedding_table(labels)
        return embeddings


class Attention(nn.Module):
    def __init__(self, dim, n_heads):
        super().__init__()

        self.n_heads = n_heads
        self.n_rep = 1
        self.head_dim = dim // n_heads

        self.wq = nn.Linear(dim, n_heads * self.head_dim, bias=False)
        self.wk = nn.Linear(dim, self.n_heads * self.head_dim, bias=False)
        self.wv = nn.Linear(dim, self.n_heads * self.head_dim, bias=False)
        self.wo = nn.Linear(n_heads * self.head_dim, dim, bias=False)

        self.q_norm = nn.LayerNorm(self.n_heads * self.head_dim)
        self.k_norm = nn.LayerNorm(self.n_heads * self.head_dim)

    @staticmethod
    def reshape_for_broadcast(freqs_cis, x):
        ndim = x.ndim
        assert 0 <= 1 < ndim
        # assert freqs_cis.shape == (x.shape[1], x.shape[-1])
        _freqs_cis = freqs_cis[: x.shape[1]]
        shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
        return _freqs_cis.view(*shape)

    @staticmethod
    def apply_rotary_emb(xq, xk, freqs_cis):
        xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
        xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
        freqs_cis_xq = Attention.reshape_for_broadcast(freqs_cis, xq_)
        freqs_cis_xk = Attention.reshape_for_broadcast(freqs_cis, xk_)

        xq_out = torch.view_as_real(xq_ * freqs_cis_xq).flatten(3)
        xk_out = torch.view_as_real(xk_ * freqs_cis_xk).flatten(3)
        return xq_out, xk_out

    def forward(self, x, freqs_cis):
        bsz, seqlen, _ = x.shape

        xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)

        dtype = xq.dtype

        xq = self.q_norm(xq)
        xk = self.k_norm(xk)

        xq = xq.view(bsz, seqlen, self.n_heads, self.head_dim)
        xk = xk.view(bsz, seqlen, self.n_heads, self.head_dim)
        xv = xv.view(bsz, seqlen, self.n_heads, self.head_dim)

        xq, xk = self.apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
        xq, xk = xq.to(dtype), xk.to(dtype)

        output = F.scaled_dot_product_attention(
            xq.permute(0, 2, 1, 3),
            xk.permute(0, 2, 1, 3),
            xv.permute(0, 2, 1, 3),
            dropout_p=0.0,
            is_causal=False,
        ).permute(0, 2, 1, 3)
        output = output.flatten(-2)

        return self.wo(output)


class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, multiple_of, ffn_dim_multiplier=None):
        super().__init__()
        hidden_dim = int(2 * hidden_dim / 3)
        if ffn_dim_multiplier:
            hidden_dim = int(ffn_dim_multiplier * hidden_dim)
        hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)

        self.w1 = nn.Linear(dim, hidden_dim, bias=False)
        self.w2 = nn.Linear(hidden_dim, dim, bias=False)
        self.w3 = nn.Linear(dim, hidden_dim, bias=False)

    def _forward_silu_gating(self, x1, x3):
        return F.silu(x1) * x3

    def forward(self, x):
        return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))


class TransformerBlock(nn.Module):
    def __init__(
        self,
        layer_id,
        dim,
        n_heads,
        multiple_of,
        ffn_dim_multiplier,
        norm_eps,
    ):
        super().__init__()
        self.dim = dim
        self.head_dim = dim // n_heads
        self.attention = Attention(dim, n_heads)
        self.feed_forward = FeedForward(
            dim=dim,
            hidden_dim=4 * dim,
            multiple_of=multiple_of,
            ffn_dim_multiplier=ffn_dim_multiplier,
        )
        self.layer_id = layer_id
        self.attention_norm = nn.LayerNorm(dim, eps=norm_eps)
        self.ffn_norm = nn.LayerNorm(dim, eps=norm_eps)

        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(min(dim, 1024), 6 * dim, bias=True),
        )

    def forward(self, x, freqs_cis, adaln_input=None):
        if adaln_input is not None:
            shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(
                6, dim=1
            )

            x = x + gate_msa.unsqueeze(1) * self.attention(
                modulate(self.attention_norm(x), shift_msa, scale_msa), freqs_cis
            )
            x = x + gate_mlp.unsqueeze(1) * self.feed_forward(modulate(self.ffn_norm(x), shift_mlp, scale_mlp))
        else:
            x = x + self.attention(self.attention_norm(x), freqs_cis)
            x = x + self.feed_forward(self.ffn_norm(x))

        return x


class FinalLayer(nn.Module):
    def __init__(self, hidden_size, out_channels):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, out_channels, bias=True)
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(min(hidden_size, 1024), 2 * hidden_size, bias=True),
        )
        # # init zero
        nn.init.constant_(self.linear.weight, 0)
        nn.init.constant_(self.linear.bias, 0)

    def forward(self, x, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x


class DiT_Llama(ModelMixin, ConfigMixin):

    @register_to_config
    def __init__(
        self,
        embedding_dim=3,
        hidden_dim=512,
        n_layers=5,
        n_heads=16,
        multiple_of=256,
        ffn_dim_multiplier=None,
        norm_eps=1e-5,
    ):
        super().__init__()

        self.in_channels = embedding_dim
        self.out_channels = embedding_dim

        self.x_embedder = nn.Linear(embedding_dim, hidden_dim, bias=True)
        nn.init.constant_(self.x_embedder.bias, 0)

        self.t_embedder = TimestepEmbedder(min(hidden_dim, 1024))
        # self.y_embedder = LabelEmbedder(num_classes, min(dim, 1024), class_dropout_prob)

        self.layers = nn.ModuleList(
            [
                TransformerBlock(
                    layer_id,
                    hidden_dim,
                    n_heads,
                    multiple_of,
                    ffn_dim_multiplier,
                    norm_eps,
                )
                for layer_id in range(n_layers)
            ]
        )
        self.final_layer = FinalLayer(hidden_dim, self.out_channels)

        self.freqs_cis = DiT_Llama.precompute_freqs_cis(hidden_dim // n_heads, 4096)

    def forward(self, x, t, cond):
        self.freqs_cis = self.freqs_cis.to(x.device)

        x = torch.cat([x, cond], dim=1)

        x = self.x_embedder(x)

        t = self.t_embedder(t)  # (N, D)
        adaln_input = t.to(x.dtype)

        for layer in self.layers:
            x = layer(x, self.freqs_cis[: x.size(1)], adaln_input=adaln_input)

        x = self.final_layer(x, adaln_input)
        # Drop the cond part
        x = x[:, : -cond.size(1)]
        return x

    def forward_with_cfg(self, x, t, cond, cfg_scale):
        half = x[: len(x) // 2]
        combined = torch.cat([half, half], dim=0)
        model_out = self.forward(combined, t, cond)
        eps, rest = model_out[:, : self.in_channels], model_out[:, self.in_channels :]
        cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
        half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
        eps = torch.cat([half_eps, half_eps], dim=0)
        return torch.cat([eps, rest], dim=1)

    @staticmethod
    def precompute_freqs_cis(dim, end, theta=10000.0):
        freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
        t = torch.arange(end)
        freqs = torch.outer(t, freqs).float()
        freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
        return freqs_cis


def DiT_base(**kwargs):
    return DiT_Llama(in_dim=2048, hidden_dim=2048, n_layers=8, n_heads=32, **kwargs)


if __name__ == "__main__":
    model = DiT_Llama_600M_patch2()
    model.eval()
    x = torch.randn(2, 3, 32, 32)
    t = torch.randint(0, 100, (2,))
    y = torch.randint(0, 10, (2,))

    with torch.no_grad():
        out = model(x, t, y)
        print(out.shape)
        out = model.forward_with_cfg(x, t, y, 0.5)
        print(out.shape)