kfirbria commited on
Commit
779c9ab
·
1 Parent(s): 14940b9
.gradio/certificate.pem ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ -----BEGIN CERTIFICATE-----
2
+ MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
3
+ TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
4
+ cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
5
+ WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
6
+ ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
7
+ MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
8
+ h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
9
+ 0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
10
+ A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
11
+ T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
12
+ B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
13
+ B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
14
+ KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
15
+ OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
16
+ jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
17
+ qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
18
+ rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
19
+ HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
20
+ hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
21
+ ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
22
+ 3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
23
+ NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
24
+ ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
25
+ TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
26
+ jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
27
+ oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
28
+ 4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
29
+ mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
30
+ emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
31
+ -----END CERTIFICATE-----
.python-version ADDED
@@ -0,0 +1 @@
 
 
1
+ 3.12
app.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ from pit import PiTDemoPipeline
4
+
5
+ BLOCK_WIDTH = 300
6
+ BLOCK_HEIGHT = 360
7
+ FONT_SIZE = 3.5
8
+
9
+ pit_pipeline = PiTDemoPipeline(
10
+ prior_repo="kfirgold99/Piece-it-Together", prior_path="models/characters_ckpt/prior.ckpt"
11
+ )
12
+
13
+
14
+ @spaces.GPU
15
+ def run_character_generation(part_1, part_2, part_3, seed=None):
16
+ crops_paths = [part_1, part_2, part_3]
17
+ image = pit_pipeline.run(crops_paths=crops_paths, seed=seed, n_images=1)[0]
18
+ return image
19
+
20
+
21
+ with gr.Blocks(css="style.css") as demo:
22
+ gr.HTML(
23
+ """<div style="text-align: center;"><h1>Piece it Together: Part-Based Concepting with IP-Priors</h1></div>"""
24
+ )
25
+ gr.HTML(
26
+ '<div style="text-align: center;"><h3><a href="https://eladrich.github.io/PiT/">https://eladrich.github.io/PiT/</a></h3></div>'
27
+ )
28
+ gr.HTML(
29
+ '<div style="text-align: center;">Piece it Together (PiT) combines different input parts to generate a complete concept in a prior domain.</div>'
30
+ )
31
+ with gr.Row(equal_height=True, elem_classes="justified-element"):
32
+ with gr.Column(scale=0, min_width=BLOCK_WIDTH):
33
+ part_1 = gr.Image(
34
+ label="Upload part 1 (or keep empty)", type="filepath", width=BLOCK_WIDTH, height=BLOCK_HEIGHT
35
+ )
36
+ with gr.Column(scale=0, min_width=BLOCK_WIDTH):
37
+ part_2 = gr.Image(
38
+ label="Upload part 2 (or keep empty)", type="filepath", width=BLOCK_WIDTH, height=BLOCK_HEIGHT
39
+ )
40
+ with gr.Column(scale=0, min_width=BLOCK_WIDTH):
41
+ part_3 = gr.Image(
42
+ label="Upload part 3 (or keep empty)", type="filepath", width=BLOCK_WIDTH, height=BLOCK_HEIGHT
43
+ )
44
+ with gr.Column(scale=0, min_width=BLOCK_WIDTH):
45
+ output_eq_1 = gr.Image(label="Output", width=BLOCK_WIDTH, height=BLOCK_HEIGHT)
46
+ with gr.Row(equal_height=True, elem_classes="justified-element"):
47
+ run_button = gr.Button("Create your character!", elem_classes="small-elem")
48
+ run_button.click(fn=run_character_generation, inputs=[part_1, part_2, part_3], outputs=[output_eq_1])
49
+ with gr.Row(equal_height=True, elem_classes="justified-element"):
50
+ pass
51
+
52
+ with gr.Row(equal_height=True, elem_classes="justified-element"):
53
+ with gr.Column(scale=1):
54
+ examples = [
55
+ [
56
+ "assets/characters_parts/part_a.jpg",
57
+ "assets/characters_parts/part_b.jpg",
58
+ "assets/characters_parts/part_c.jpg",
59
+ ]
60
+ ]
61
+ gr.Examples(
62
+ examples=examples,
63
+ inputs=[part_1, part_2, part_3],
64
+ outputs=[output_eq_1],
65
+ fn=run_character_generation,
66
+ cache_examples=False,
67
+ )
68
+
69
+ demo.queue().launch(share=True)
assets/characters_parts/part_a.jpg ADDED
assets/characters_parts/part_b.jpg ADDED
assets/characters_parts/part_c.jpg ADDED
ip_adapter/__init__.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from .ip_adapter import IPAdapter, IPAdapterPlus, IPAdapterPlusXL, IPAdapterXL, IPAdapterFull
2
+
3
+ __all__ = [
4
+ "IPAdapter",
5
+ "IPAdapterPlus",
6
+ "IPAdapterPlusXL",
7
+ "IPAdapterXL",
8
+ "IPAdapterFull",
9
+ ]
ip_adapter/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (362 Bytes). View file
 
ip_adapter/__pycache__/attention_processor.cpython-312.pyc ADDED
Binary file (21 kB). View file
 
ip_adapter/__pycache__/ip_adapter.cpython-312.pyc ADDED
Binary file (22.3 kB). View file
 
ip_adapter/__pycache__/resampler.cpython-312.pyc ADDED
Binary file (7.82 kB). View file
 
ip_adapter/__pycache__/utils.cpython-312.pyc ADDED
Binary file (4.69 kB). View file
 
ip_adapter/attention_processor.py ADDED
@@ -0,0 +1,568 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+
7
+ class AttnProcessor(nn.Module):
8
+ r"""
9
+ Default processor for performing attention-related computations.
10
+ """
11
+
12
+ def __init__(
13
+ self,
14
+ hidden_size=None,
15
+ cross_attention_dim=None,
16
+ ):
17
+ super().__init__()
18
+
19
+ def __call__(
20
+ self,
21
+ attn,
22
+ hidden_states,
23
+ encoder_hidden_states=None,
24
+ attention_mask=None,
25
+ temb=None,
26
+ *args,
27
+ **kwargs,
28
+ ):
29
+ residual = hidden_states
30
+
31
+ if attn.spatial_norm is not None:
32
+ hidden_states = attn.spatial_norm(hidden_states, temb)
33
+
34
+ input_ndim = hidden_states.ndim
35
+
36
+ if input_ndim == 4:
37
+ batch_size, channel, height, width = hidden_states.shape
38
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
39
+
40
+ batch_size, sequence_length, _ = (
41
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
42
+ )
43
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
44
+
45
+ if attn.group_norm is not None:
46
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
47
+
48
+ query = attn.to_q(hidden_states)
49
+
50
+ if encoder_hidden_states is None:
51
+ encoder_hidden_states = hidden_states
52
+ elif attn.norm_cross:
53
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
54
+
55
+ key = attn.to_k(encoder_hidden_states)
56
+ value = attn.to_v(encoder_hidden_states)
57
+
58
+ query = attn.head_to_batch_dim(query)
59
+ key = attn.head_to_batch_dim(key)
60
+ value = attn.head_to_batch_dim(value)
61
+
62
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
63
+ hidden_states = torch.bmm(attention_probs, value)
64
+ hidden_states = attn.batch_to_head_dim(hidden_states)
65
+
66
+ # linear proj
67
+ hidden_states = attn.to_out[0](hidden_states)
68
+ # dropout
69
+ hidden_states = attn.to_out[1](hidden_states)
70
+
71
+ if input_ndim == 4:
72
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
73
+
74
+ if attn.residual_connection:
75
+ hidden_states = hidden_states + residual
76
+
77
+ hidden_states = hidden_states / attn.rescale_output_factor
78
+
79
+ return hidden_states
80
+
81
+
82
+ class IPAttnProcessor(nn.Module):
83
+ r"""
84
+ Attention processor for IP-Adapater.
85
+ Args:
86
+ hidden_size (`int`):
87
+ The hidden size of the attention layer.
88
+ cross_attention_dim (`int`):
89
+ The number of channels in the `encoder_hidden_states`.
90
+ scale (`float`, defaults to 1.0):
91
+ the weight scale of image prompt.
92
+ num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
93
+ The context length of the image features.
94
+ """
95
+
96
+ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
97
+ super().__init__()
98
+
99
+ self.hidden_size = hidden_size
100
+ self.cross_attention_dim = cross_attention_dim
101
+ self.scale = scale
102
+ self.num_tokens = num_tokens
103
+
104
+ self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
105
+ self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
106
+
107
+ def __call__(
108
+ self,
109
+ attn,
110
+ hidden_states,
111
+ encoder_hidden_states=None,
112
+ attention_mask=None,
113
+ temb=None,
114
+ *args,
115
+ **kwargs,
116
+ ):
117
+ residual = hidden_states
118
+
119
+ if attn.spatial_norm is not None:
120
+ hidden_states = attn.spatial_norm(hidden_states, temb)
121
+
122
+ input_ndim = hidden_states.ndim
123
+
124
+ if input_ndim == 4:
125
+ batch_size, channel, height, width = hidden_states.shape
126
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
127
+
128
+ batch_size, sequence_length, _ = (
129
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
130
+ )
131
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
132
+
133
+ if attn.group_norm is not None:
134
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
135
+
136
+ query = attn.to_q(hidden_states)
137
+
138
+ if encoder_hidden_states is None:
139
+ encoder_hidden_states = hidden_states
140
+ else:
141
+ # get encoder_hidden_states, ip_hidden_states
142
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
143
+ encoder_hidden_states, ip_hidden_states = (
144
+ encoder_hidden_states[:, :end_pos, :],
145
+ encoder_hidden_states[:, end_pos:, :],
146
+ )
147
+ if attn.norm_cross:
148
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
149
+
150
+ key = attn.to_k(encoder_hidden_states)
151
+ value = attn.to_v(encoder_hidden_states)
152
+
153
+ query = attn.head_to_batch_dim(query)
154
+ key = attn.head_to_batch_dim(key)
155
+ value = attn.head_to_batch_dim(value)
156
+
157
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
158
+ hidden_states = torch.bmm(attention_probs, value)
159
+ hidden_states = attn.batch_to_head_dim(hidden_states)
160
+
161
+ # for ip-adapter
162
+ ip_key = self.to_k_ip(ip_hidden_states)
163
+ ip_value = self.to_v_ip(ip_hidden_states)
164
+
165
+ ip_key = attn.head_to_batch_dim(ip_key)
166
+ ip_value = attn.head_to_batch_dim(ip_value)
167
+
168
+ ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
169
+ self.attn_map = ip_attention_probs
170
+ ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
171
+ ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
172
+
173
+ hidden_states = hidden_states + self.scale * ip_hidden_states
174
+
175
+ # linear proj
176
+ hidden_states = attn.to_out[0](hidden_states)
177
+ # dropout
178
+ hidden_states = attn.to_out[1](hidden_states)
179
+
180
+ if input_ndim == 4:
181
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
182
+
183
+ if attn.residual_connection:
184
+ hidden_states = hidden_states + residual
185
+
186
+ hidden_states = hidden_states / attn.rescale_output_factor
187
+
188
+ return hidden_states
189
+
190
+
191
+ class AttnProcessor2_0(torch.nn.Module):
192
+ r"""
193
+ Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
194
+ """
195
+
196
+ def __init__(
197
+ self,
198
+ hidden_size=None,
199
+ cross_attention_dim=None,
200
+ ):
201
+ super().__init__()
202
+ if not hasattr(F, "scaled_dot_product_attention"):
203
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
204
+
205
+ def __call__(
206
+ self,
207
+ attn,
208
+ hidden_states,
209
+ encoder_hidden_states=None,
210
+ attention_mask=None,
211
+ temb=None,
212
+ *args,
213
+ **kwargs,
214
+ ):
215
+ residual = hidden_states
216
+
217
+ if attn.spatial_norm is not None:
218
+ hidden_states = attn.spatial_norm(hidden_states, temb)
219
+
220
+ input_ndim = hidden_states.ndim
221
+
222
+ if input_ndim == 4:
223
+ batch_size, channel, height, width = hidden_states.shape
224
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
225
+
226
+ batch_size, sequence_length, _ = (
227
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
228
+ )
229
+
230
+ if attention_mask is not None:
231
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
232
+ # scaled_dot_product_attention expects attention_mask shape to be
233
+ # (batch, heads, source_length, target_length)
234
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
235
+
236
+ if attn.group_norm is not None:
237
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
238
+
239
+ query = attn.to_q(hidden_states)
240
+
241
+ if encoder_hidden_states is None:
242
+ encoder_hidden_states = hidden_states
243
+ elif attn.norm_cross:
244
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
245
+
246
+ key = attn.to_k(encoder_hidden_states)
247
+ value = attn.to_v(encoder_hidden_states)
248
+
249
+ inner_dim = key.shape[-1]
250
+ head_dim = inner_dim // attn.heads
251
+
252
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
253
+
254
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
255
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
256
+
257
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
258
+ # TODO: add support for attn.scale when we move to Torch 2.1
259
+ hidden_states = F.scaled_dot_product_attention(
260
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
261
+ )
262
+
263
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
264
+ hidden_states = hidden_states.to(query.dtype)
265
+
266
+ # linear proj
267
+ hidden_states = attn.to_out[0](hidden_states)
268
+ # dropout
269
+ hidden_states = attn.to_out[1](hidden_states)
270
+
271
+ if input_ndim == 4:
272
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
273
+
274
+ if attn.residual_connection:
275
+ hidden_states = hidden_states + residual
276
+
277
+ hidden_states = hidden_states / attn.rescale_output_factor
278
+
279
+ return hidden_states
280
+
281
+
282
+ class IPAttnProcessor2_0(torch.nn.Module):
283
+ r"""
284
+ Attention processor for IP-Adapater for PyTorch 2.0.
285
+ Args:
286
+ hidden_size (`int`):
287
+ The hidden size of the attention layer.
288
+ cross_attention_dim (`int`):
289
+ The number of channels in the `encoder_hidden_states`.
290
+ scale (`float`, defaults to 1.0):
291
+ the weight scale of image prompt.
292
+ num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
293
+ The context length of the image features.
294
+ """
295
+
296
+ def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
297
+ super().__init__()
298
+
299
+ if not hasattr(F, "scaled_dot_product_attention"):
300
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
301
+
302
+ self.hidden_size = hidden_size
303
+ self.cross_attention_dim = cross_attention_dim
304
+ self.scale = scale
305
+ self.num_tokens = num_tokens
306
+
307
+ self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
308
+ self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
309
+
310
+ def __call__(
311
+ self,
312
+ attn,
313
+ hidden_states,
314
+ encoder_hidden_states=None,
315
+ attention_mask=None,
316
+ temb=None,
317
+ *args,
318
+ **kwargs,
319
+ ):
320
+ residual = hidden_states
321
+
322
+ if attn.spatial_norm is not None:
323
+ hidden_states = attn.spatial_norm(hidden_states, temb)
324
+
325
+ input_ndim = hidden_states.ndim
326
+
327
+ if input_ndim == 4:
328
+ batch_size, channel, height, width = hidden_states.shape
329
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
330
+
331
+ batch_size, sequence_length, _ = (
332
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
333
+ )
334
+
335
+ if attention_mask is not None:
336
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
337
+ # scaled_dot_product_attention expects attention_mask shape to be
338
+ # (batch, heads, source_length, target_length)
339
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
340
+
341
+ if attn.group_norm is not None:
342
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
343
+
344
+ query = attn.to_q(hidden_states)
345
+
346
+ if encoder_hidden_states is None:
347
+ encoder_hidden_states = hidden_states
348
+ else:
349
+ # get encoder_hidden_states, ip_hidden_states
350
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
351
+ encoder_hidden_states, ip_hidden_states = (
352
+ encoder_hidden_states[:, :end_pos, :],
353
+ encoder_hidden_states[:, end_pos:, :],
354
+ )
355
+ if attn.norm_cross:
356
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
357
+
358
+ key = attn.to_k(encoder_hidden_states)
359
+ value = attn.to_v(encoder_hidden_states)
360
+
361
+ inner_dim = key.shape[-1]
362
+ head_dim = inner_dim // attn.heads
363
+
364
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
365
+
366
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
367
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
368
+
369
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
370
+ # TODO: add support for attn.scale when we move to Torch 2.1
371
+ hidden_states = F.scaled_dot_product_attention(
372
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
373
+ )
374
+
375
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
376
+ hidden_states = hidden_states.to(query.dtype)
377
+
378
+ # for ip-adapter
379
+ ip_key = self.to_k_ip(ip_hidden_states)
380
+ ip_value = self.to_v_ip(ip_hidden_states)
381
+
382
+ ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
383
+ ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
384
+
385
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
386
+ # TODO: add support for attn.scale when we move to Torch 2.1
387
+ ip_hidden_states = F.scaled_dot_product_attention(
388
+ query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
389
+ )
390
+ with torch.no_grad():
391
+ self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1)
392
+ #print(self.attn_map.shape)
393
+
394
+ ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
395
+ ip_hidden_states = ip_hidden_states.to(query.dtype)
396
+
397
+ hidden_states = hidden_states + self.scale * ip_hidden_states
398
+
399
+ # linear proj
400
+ hidden_states = attn.to_out[0](hidden_states)
401
+ # dropout
402
+ hidden_states = attn.to_out[1](hidden_states)
403
+
404
+ if input_ndim == 4:
405
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
406
+
407
+ if attn.residual_connection:
408
+ hidden_states = hidden_states + residual
409
+
410
+ hidden_states = hidden_states / attn.rescale_output_factor
411
+
412
+ return hidden_states
413
+
414
+
415
+ ## for controlnet
416
+ class CNAttnProcessor:
417
+ r"""
418
+ Default processor for performing attention-related computations.
419
+ """
420
+
421
+ def __init__(self, num_tokens=4):
422
+ self.num_tokens = num_tokens
423
+
424
+ def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None, *args, **kwargs,):
425
+ residual = hidden_states
426
+
427
+ if attn.spatial_norm is not None:
428
+ hidden_states = attn.spatial_norm(hidden_states, temb)
429
+
430
+ input_ndim = hidden_states.ndim
431
+
432
+ if input_ndim == 4:
433
+ batch_size, channel, height, width = hidden_states.shape
434
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
435
+
436
+ batch_size, sequence_length, _ = (
437
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
438
+ )
439
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
440
+
441
+ if attn.group_norm is not None:
442
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
443
+
444
+ query = attn.to_q(hidden_states)
445
+
446
+ if encoder_hidden_states is None:
447
+ encoder_hidden_states = hidden_states
448
+ else:
449
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
450
+ encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
451
+ if attn.norm_cross:
452
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
453
+
454
+ key = attn.to_k(encoder_hidden_states)
455
+ value = attn.to_v(encoder_hidden_states)
456
+
457
+ query = attn.head_to_batch_dim(query)
458
+ key = attn.head_to_batch_dim(key)
459
+ value = attn.head_to_batch_dim(value)
460
+
461
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
462
+ hidden_states = torch.bmm(attention_probs, value)
463
+ hidden_states = attn.batch_to_head_dim(hidden_states)
464
+
465
+ # linear proj
466
+ hidden_states = attn.to_out[0](hidden_states)
467
+ # dropout
468
+ hidden_states = attn.to_out[1](hidden_states)
469
+
470
+ if input_ndim == 4:
471
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
472
+
473
+ if attn.residual_connection:
474
+ hidden_states = hidden_states + residual
475
+
476
+ hidden_states = hidden_states / attn.rescale_output_factor
477
+
478
+ return hidden_states
479
+
480
+
481
+ class CNAttnProcessor2_0:
482
+ r"""
483
+ Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
484
+ """
485
+
486
+ def __init__(self, num_tokens=4):
487
+ if not hasattr(F, "scaled_dot_product_attention"):
488
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
489
+ self.num_tokens = num_tokens
490
+
491
+ def __call__(
492
+ self,
493
+ attn,
494
+ hidden_states,
495
+ encoder_hidden_states=None,
496
+ attention_mask=None,
497
+ temb=None,
498
+ *args,
499
+ **kwargs,
500
+ ):
501
+ residual = hidden_states
502
+
503
+ if attn.spatial_norm is not None:
504
+ hidden_states = attn.spatial_norm(hidden_states, temb)
505
+
506
+ input_ndim = hidden_states.ndim
507
+
508
+ if input_ndim == 4:
509
+ batch_size, channel, height, width = hidden_states.shape
510
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
511
+
512
+ batch_size, sequence_length, _ = (
513
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
514
+ )
515
+
516
+ if attention_mask is not None:
517
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
518
+ # scaled_dot_product_attention expects attention_mask shape to be
519
+ # (batch, heads, source_length, target_length)
520
+ attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
521
+
522
+ if attn.group_norm is not None:
523
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
524
+
525
+ query = attn.to_q(hidden_states)
526
+
527
+ if encoder_hidden_states is None:
528
+ encoder_hidden_states = hidden_states
529
+ else:
530
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
531
+ encoder_hidden_states = encoder_hidden_states[:, :end_pos] # only use text
532
+ if attn.norm_cross:
533
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
534
+
535
+ key = attn.to_k(encoder_hidden_states)
536
+ value = attn.to_v(encoder_hidden_states)
537
+
538
+ inner_dim = key.shape[-1]
539
+ head_dim = inner_dim // attn.heads
540
+
541
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
542
+
543
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
544
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
545
+
546
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
547
+ # TODO: add support for attn.scale when we move to Torch 2.1
548
+ hidden_states = F.scaled_dot_product_attention(
549
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
550
+ )
551
+
552
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
553
+ hidden_states = hidden_states.to(query.dtype)
554
+
555
+ # linear proj
556
+ hidden_states = attn.to_out[0](hidden_states)
557
+ # dropout
558
+ hidden_states = attn.to_out[1](hidden_states)
559
+
560
+ if input_ndim == 4:
561
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
562
+
563
+ if attn.residual_connection:
564
+ hidden_states = hidden_states + residual
565
+
566
+ hidden_states = hidden_states / attn.rescale_output_factor
567
+
568
+ return hidden_states
ip_adapter/attention_processor_faceid.py ADDED
@@ -0,0 +1,433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+ from diffusers.models.lora import LoRALinearLayer
7
+
8
+
9
+ class LoRAAttnProcessor(nn.Module):
10
+ r"""
11
+ Default processor for performing attention-related computations.
12
+ """
13
+
14
+ def __init__(
15
+ self,
16
+ hidden_size=None,
17
+ cross_attention_dim=None,
18
+ rank=4,
19
+ network_alpha=None,
20
+ lora_scale=1.0,
21
+ ):
22
+ super().__init__()
23
+
24
+ self.rank = rank
25
+ self.lora_scale = lora_scale
26
+
27
+ self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
28
+ self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
29
+ self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
30
+ self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
31
+
32
+ def __call__(
33
+ self,
34
+ attn,
35
+ hidden_states,
36
+ encoder_hidden_states=None,
37
+ attention_mask=None,
38
+ temb=None,
39
+ *args,
40
+ **kwargs,
41
+ ):
42
+ residual = hidden_states
43
+
44
+ if attn.spatial_norm is not None:
45
+ hidden_states = attn.spatial_norm(hidden_states, temb)
46
+
47
+ input_ndim = hidden_states.ndim
48
+
49
+ if input_ndim == 4:
50
+ batch_size, channel, height, width = hidden_states.shape
51
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
52
+
53
+ batch_size, sequence_length, _ = (
54
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
55
+ )
56
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
57
+
58
+ if attn.group_norm is not None:
59
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
60
+
61
+ query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states)
62
+
63
+ if encoder_hidden_states is None:
64
+ encoder_hidden_states = hidden_states
65
+ elif attn.norm_cross:
66
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
67
+
68
+ key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
69
+ value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
70
+
71
+ query = attn.head_to_batch_dim(query)
72
+ key = attn.head_to_batch_dim(key)
73
+ value = attn.head_to_batch_dim(value)
74
+
75
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
76
+ hidden_states = torch.bmm(attention_probs, value)
77
+ hidden_states = attn.batch_to_head_dim(hidden_states)
78
+
79
+ # linear proj
80
+ hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states)
81
+ # dropout
82
+ hidden_states = attn.to_out[1](hidden_states)
83
+
84
+ if input_ndim == 4:
85
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
86
+
87
+ if attn.residual_connection:
88
+ hidden_states = hidden_states + residual
89
+
90
+ hidden_states = hidden_states / attn.rescale_output_factor
91
+
92
+ return hidden_states
93
+
94
+
95
+ class LoRAIPAttnProcessor(nn.Module):
96
+ r"""
97
+ Attention processor for IP-Adapater.
98
+ Args:
99
+ hidden_size (`int`):
100
+ The hidden size of the attention layer.
101
+ cross_attention_dim (`int`):
102
+ The number of channels in the `encoder_hidden_states`.
103
+ scale (`float`, defaults to 1.0):
104
+ the weight scale of image prompt.
105
+ num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
106
+ The context length of the image features.
107
+ """
108
+
109
+ def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None, lora_scale=1.0, scale=1.0, num_tokens=4):
110
+ super().__init__()
111
+
112
+ self.rank = rank
113
+ self.lora_scale = lora_scale
114
+
115
+ self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
116
+ self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
117
+ self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
118
+ self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
119
+
120
+ self.hidden_size = hidden_size
121
+ self.cross_attention_dim = cross_attention_dim
122
+ self.scale = scale
123
+ self.num_tokens = num_tokens
124
+
125
+ self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
126
+ self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
127
+
128
+ def __call__(
129
+ self,
130
+ attn,
131
+ hidden_states,
132
+ encoder_hidden_states=None,
133
+ attention_mask=None,
134
+ temb=None,
135
+ *args,
136
+ **kwargs,
137
+ ):
138
+ residual = hidden_states
139
+
140
+ if attn.spatial_norm is not None:
141
+ hidden_states = attn.spatial_norm(hidden_states, temb)
142
+
143
+ input_ndim = hidden_states.ndim
144
+
145
+ if input_ndim == 4:
146
+ batch_size, channel, height, width = hidden_states.shape
147
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
148
+
149
+ batch_size, sequence_length, _ = (
150
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
151
+ )
152
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
153
+
154
+ if attn.group_norm is not None:
155
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
156
+
157
+ query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states)
158
+
159
+ if encoder_hidden_states is None:
160
+ encoder_hidden_states = hidden_states
161
+ else:
162
+ # get encoder_hidden_states, ip_hidden_states
163
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
164
+ encoder_hidden_states, ip_hidden_states = (
165
+ encoder_hidden_states[:, :end_pos, :],
166
+ encoder_hidden_states[:, end_pos:, :],
167
+ )
168
+ if attn.norm_cross:
169
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
170
+
171
+ key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
172
+ value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
173
+
174
+ query = attn.head_to_batch_dim(query)
175
+ key = attn.head_to_batch_dim(key)
176
+ value = attn.head_to_batch_dim(value)
177
+
178
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
179
+ hidden_states = torch.bmm(attention_probs, value)
180
+ hidden_states = attn.batch_to_head_dim(hidden_states)
181
+
182
+ # for ip-adapter
183
+ ip_key = self.to_k_ip(ip_hidden_states)
184
+ ip_value = self.to_v_ip(ip_hidden_states)
185
+
186
+ ip_key = attn.head_to_batch_dim(ip_key)
187
+ ip_value = attn.head_to_batch_dim(ip_value)
188
+
189
+ ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
190
+ self.attn_map = ip_attention_probs
191
+ ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
192
+ ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
193
+
194
+ hidden_states = hidden_states + self.scale * ip_hidden_states
195
+
196
+ # linear proj
197
+ hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states)
198
+ # dropout
199
+ hidden_states = attn.to_out[1](hidden_states)
200
+
201
+ if input_ndim == 4:
202
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
203
+
204
+ if attn.residual_connection:
205
+ hidden_states = hidden_states + residual
206
+
207
+ hidden_states = hidden_states / attn.rescale_output_factor
208
+
209
+ return hidden_states
210
+
211
+
212
+ class LoRAAttnProcessor2_0(nn.Module):
213
+
214
+ r"""
215
+ Default processor for performing attention-related computations.
216
+ """
217
+
218
+ def __init__(
219
+ self,
220
+ hidden_size=None,
221
+ cross_attention_dim=None,
222
+ rank=4,
223
+ network_alpha=None,
224
+ lora_scale=1.0,
225
+ ):
226
+ super().__init__()
227
+
228
+ self.rank = rank
229
+ self.lora_scale = lora_scale
230
+
231
+ self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
232
+ self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
233
+ self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
234
+ self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
235
+
236
+ def __call__(
237
+ self,
238
+ attn,
239
+ hidden_states,
240
+ encoder_hidden_states=None,
241
+ attention_mask=None,
242
+ temb=None,
243
+ *args,
244
+ **kwargs,
245
+ ):
246
+ residual = hidden_states
247
+
248
+ if attn.spatial_norm is not None:
249
+ hidden_states = attn.spatial_norm(hidden_states, temb)
250
+
251
+ input_ndim = hidden_states.ndim
252
+
253
+ if input_ndim == 4:
254
+ batch_size, channel, height, width = hidden_states.shape
255
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
256
+
257
+ batch_size, sequence_length, _ = (
258
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
259
+ )
260
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
261
+
262
+ if attn.group_norm is not None:
263
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
264
+
265
+ query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states)
266
+
267
+ if encoder_hidden_states is None:
268
+ encoder_hidden_states = hidden_states
269
+ elif attn.norm_cross:
270
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
271
+
272
+ key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
273
+ value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
274
+
275
+ inner_dim = key.shape[-1]
276
+ head_dim = inner_dim // attn.heads
277
+
278
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
279
+
280
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
281
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
282
+
283
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
284
+ # TODO: add support for attn.scale when we move to Torch 2.1
285
+ hidden_states = F.scaled_dot_product_attention(
286
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
287
+ )
288
+
289
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
290
+ hidden_states = hidden_states.to(query.dtype)
291
+
292
+ # linear proj
293
+ hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states)
294
+ # dropout
295
+ hidden_states = attn.to_out[1](hidden_states)
296
+
297
+ if input_ndim == 4:
298
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
299
+
300
+ if attn.residual_connection:
301
+ hidden_states = hidden_states + residual
302
+
303
+ hidden_states = hidden_states / attn.rescale_output_factor
304
+
305
+ return hidden_states
306
+
307
+
308
+ class LoRAIPAttnProcessor2_0(nn.Module):
309
+ r"""
310
+ Processor for implementing the LoRA attention mechanism.
311
+
312
+ Args:
313
+ hidden_size (`int`, *optional*):
314
+ The hidden size of the attention layer.
315
+ cross_attention_dim (`int`, *optional*):
316
+ The number of channels in the `encoder_hidden_states`.
317
+ rank (`int`, defaults to 4):
318
+ The dimension of the LoRA update matrices.
319
+ network_alpha (`int`, *optional*):
320
+ Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.
321
+ """
322
+
323
+ def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None, lora_scale=1.0, scale=1.0, num_tokens=4):
324
+ super().__init__()
325
+
326
+ self.rank = rank
327
+ self.lora_scale = lora_scale
328
+ self.num_tokens = num_tokens
329
+
330
+ self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
331
+ self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
332
+ self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
333
+ self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
334
+
335
+
336
+ self.hidden_size = hidden_size
337
+ self.cross_attention_dim = cross_attention_dim
338
+ self.scale = scale
339
+
340
+ self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
341
+ self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
342
+
343
+ def __call__(
344
+ self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0, temb=None, *args, **kwargs,
345
+ ):
346
+ residual = hidden_states
347
+
348
+ if attn.spatial_norm is not None:
349
+ hidden_states = attn.spatial_norm(hidden_states, temb)
350
+
351
+ input_ndim = hidden_states.ndim
352
+
353
+ if input_ndim == 4:
354
+ batch_size, channel, height, width = hidden_states.shape
355
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
356
+
357
+ batch_size, sequence_length, _ = (
358
+ hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
359
+ )
360
+ attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
361
+
362
+ if attn.group_norm is not None:
363
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
364
+
365
+ query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states)
366
+ #query = attn.head_to_batch_dim(query)
367
+
368
+ if encoder_hidden_states is None:
369
+ encoder_hidden_states = hidden_states
370
+ else:
371
+ # get encoder_hidden_states, ip_hidden_states
372
+ end_pos = encoder_hidden_states.shape[1] - self.num_tokens
373
+ encoder_hidden_states, ip_hidden_states = (
374
+ encoder_hidden_states[:, :end_pos, :],
375
+ encoder_hidden_states[:, end_pos:, :],
376
+ )
377
+ if attn.norm_cross:
378
+ encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
379
+
380
+ # for text
381
+ key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
382
+ value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
383
+
384
+ inner_dim = key.shape[-1]
385
+ head_dim = inner_dim // attn.heads
386
+
387
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
388
+
389
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
390
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
391
+
392
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
393
+ # TODO: add support for attn.scale when we move to Torch 2.1
394
+ hidden_states = F.scaled_dot_product_attention(
395
+ query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
396
+ )
397
+
398
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
399
+ hidden_states = hidden_states.to(query.dtype)
400
+
401
+ # for ip
402
+ ip_key = self.to_k_ip(ip_hidden_states)
403
+ ip_value = self.to_v_ip(ip_hidden_states)
404
+
405
+ ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
406
+ ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
407
+
408
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
409
+ # TODO: add support for attn.scale when we move to Torch 2.1
410
+ ip_hidden_states = F.scaled_dot_product_attention(
411
+ query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
412
+ )
413
+
414
+
415
+ ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
416
+ ip_hidden_states = ip_hidden_states.to(query.dtype)
417
+
418
+ hidden_states = hidden_states + self.scale * ip_hidden_states
419
+
420
+ # linear proj
421
+ hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states)
422
+ # dropout
423
+ hidden_states = attn.to_out[1](hidden_states)
424
+
425
+ if input_ndim == 4:
426
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
427
+
428
+ if attn.residual_connection:
429
+ hidden_states = hidden_states + residual
430
+
431
+ hidden_states = hidden_states / attn.rescale_output_factor
432
+
433
+ return hidden_states
ip_adapter/custom_pipelines.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
2
+
3
+ import torch
4
+ from diffusers import StableDiffusionXLPipeline
5
+ from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
6
+ from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import rescale_noise_cfg
7
+
8
+ from .utils import is_torch2_available
9
+
10
+ if is_torch2_available():
11
+ from .attention_processor import IPAttnProcessor2_0 as IPAttnProcessor
12
+ else:
13
+ from .attention_processor import IPAttnProcessor
14
+
15
+
16
+ class StableDiffusionXLCustomPipeline(StableDiffusionXLPipeline):
17
+ def set_scale(self, scale):
18
+ for attn_processor in self.unet.attn_processors.values():
19
+ if isinstance(attn_processor, IPAttnProcessor):
20
+ attn_processor.scale = scale
21
+
22
+ @torch.no_grad()
23
+ def __call__( # noqa: C901
24
+ self,
25
+ prompt: Optional[Union[str, List[str]]] = None,
26
+ prompt_2: Optional[Union[str, List[str]]] = None,
27
+ height: Optional[int] = None,
28
+ width: Optional[int] = None,
29
+ num_inference_steps: int = 50,
30
+ denoising_end: Optional[float] = None,
31
+ guidance_scale: float = 5.0,
32
+ negative_prompt: Optional[Union[str, List[str]]] = None,
33
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
34
+ num_images_per_prompt: Optional[int] = 1,
35
+ eta: float = 0.0,
36
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
37
+ latents: Optional[torch.FloatTensor] = None,
38
+ prompt_embeds: Optional[torch.FloatTensor] = None,
39
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
40
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
41
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
42
+ output_type: Optional[str] = "pil",
43
+ return_dict: bool = True,
44
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
45
+ callback_steps: int = 1,
46
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
47
+ guidance_rescale: float = 0.0,
48
+ original_size: Optional[Tuple[int, int]] = None,
49
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
50
+ target_size: Optional[Tuple[int, int]] = None,
51
+ negative_original_size: Optional[Tuple[int, int]] = None,
52
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
53
+ negative_target_size: Optional[Tuple[int, int]] = None,
54
+ control_guidance_start: float = 0.0,
55
+ control_guidance_end: float = 1.0,
56
+ ):
57
+ r"""
58
+ Function invoked when calling the pipeline for generation.
59
+
60
+ Args:
61
+ prompt (`str` or `List[str]`, *optional*):
62
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
63
+ instead.
64
+ prompt_2 (`str` or `List[str]`, *optional*):
65
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
66
+ used in both text-encoders
67
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
68
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
69
+ Anything below 512 pixels won't work well for
70
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
71
+ and checkpoints that are not specifically fine-tuned on low resolutions.
72
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
73
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
74
+ Anything below 512 pixels won't work well for
75
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
76
+ and checkpoints that are not specifically fine-tuned on low resolutions.
77
+ num_inference_steps (`int`, *optional*, defaults to 50):
78
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
79
+ expense of slower inference.
80
+ denoising_end (`float`, *optional*):
81
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
82
+ completed before it is intentionally prematurely terminated. As a result, the returned sample will
83
+ still retain a substantial amount of noise as determined by the discrete timesteps selected by the
84
+ scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
85
+ "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
86
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
87
+ guidance_scale (`float`, *optional*, defaults to 5.0):
88
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
89
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
90
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
91
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
92
+ usually at the expense of lower image quality.
93
+ negative_prompt (`str` or `List[str]`, *optional*):
94
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
95
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
96
+ less than `1`).
97
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
98
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
99
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
100
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
101
+ The number of images to generate per prompt.
102
+ eta (`float`, *optional*, defaults to 0.0):
103
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
104
+ [`schedulers.DDIMScheduler`], will be ignored for others.
105
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
106
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
107
+ to make generation deterministic.
108
+ latents (`torch.FloatTensor`, *optional*):
109
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
110
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
111
+ tensor will ge generated by sampling using the supplied random `generator`.
112
+ prompt_embeds (`torch.FloatTensor`, *optional*):
113
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
114
+ provided, text embeddings will be generated from `prompt` input argument.
115
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
116
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
117
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
118
+ argument.
119
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
120
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
121
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
122
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
123
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
124
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
125
+ input argument.
126
+ output_type (`str`, *optional*, defaults to `"pil"`):
127
+ The output format of the generate image. Choose between
128
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
129
+ return_dict (`bool`, *optional*, defaults to `True`):
130
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
131
+ of a plain tuple.
132
+ callback (`Callable`, *optional*):
133
+ A function that will be called every `callback_steps` steps during inference. The function will be
134
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
135
+ callback_steps (`int`, *optional*, defaults to 1):
136
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
137
+ called at every step.
138
+ cross_attention_kwargs (`dict`, *optional*):
139
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
140
+ `self.processor` in
141
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
142
+ guidance_rescale (`float`, *optional*, defaults to 0.7):
143
+ Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
144
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
145
+ [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
146
+ Guidance rescale factor should fix overexposure when using zero terminal SNR.
147
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
148
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
149
+ `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
150
+ explained in section 2.2 of
151
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
152
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
153
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
154
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
155
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
156
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
157
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
158
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
159
+ not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
160
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
161
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
162
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
163
+ micro-conditioning as explained in section 2.2 of
164
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
165
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
166
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
167
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
168
+ micro-conditioning as explained in section 2.2 of
169
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
170
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
171
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
172
+ To negatively condition the generation process based on a target image resolution. It should be as same
173
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
174
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
175
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
176
+ control_guidance_start (`float`, *optional*, defaults to 0.0):
177
+ The percentage of total steps at which the ControlNet starts applying.
178
+ control_guidance_end (`float`, *optional*, defaults to 1.0):
179
+ The percentage of total steps at which the ControlNet stops applying.
180
+
181
+ Examples:
182
+
183
+ Returns:
184
+ [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
185
+ [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
186
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
187
+ """
188
+ # 0. Default height and width to unet
189
+ height = height or self.default_sample_size * self.vae_scale_factor
190
+ width = width or self.default_sample_size * self.vae_scale_factor
191
+
192
+ original_size = original_size or (height, width)
193
+ target_size = target_size or (height, width)
194
+
195
+ # 1. Check inputs. Raise error if not correct
196
+ self.check_inputs(
197
+ prompt,
198
+ prompt_2,
199
+ height,
200
+ width,
201
+ callback_steps,
202
+ negative_prompt,
203
+ negative_prompt_2,
204
+ prompt_embeds,
205
+ negative_prompt_embeds,
206
+ pooled_prompt_embeds,
207
+ negative_pooled_prompt_embeds,
208
+ )
209
+
210
+ # 2. Define call parameters
211
+ if prompt is not None and isinstance(prompt, str):
212
+ batch_size = 1
213
+ elif prompt is not None and isinstance(prompt, list):
214
+ batch_size = len(prompt)
215
+ else:
216
+ batch_size = prompt_embeds.shape[0]
217
+
218
+ device = self._execution_device
219
+
220
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
221
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
222
+ # corresponds to doing no classifier free guidance.
223
+ do_classifier_free_guidance = guidance_scale > 1.0
224
+
225
+ # 3. Encode input prompt
226
+ text_encoder_lora_scale = (
227
+ cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
228
+ )
229
+ (
230
+ prompt_embeds,
231
+ negative_prompt_embeds,
232
+ pooled_prompt_embeds,
233
+ negative_pooled_prompt_embeds,
234
+ ) = self.encode_prompt(
235
+ prompt=prompt,
236
+ prompt_2=prompt_2,
237
+ device=device,
238
+ num_images_per_prompt=num_images_per_prompt,
239
+ do_classifier_free_guidance=do_classifier_free_guidance,
240
+ negative_prompt=negative_prompt,
241
+ negative_prompt_2=negative_prompt_2,
242
+ prompt_embeds=prompt_embeds,
243
+ negative_prompt_embeds=negative_prompt_embeds,
244
+ pooled_prompt_embeds=pooled_prompt_embeds,
245
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
246
+ lora_scale=text_encoder_lora_scale,
247
+ )
248
+
249
+ # 4. Prepare timesteps
250
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
251
+
252
+ timesteps = self.scheduler.timesteps
253
+
254
+ # 5. Prepare latent variables
255
+ num_channels_latents = self.unet.config.in_channels
256
+ latents = self.prepare_latents(
257
+ batch_size * num_images_per_prompt,
258
+ num_channels_latents,
259
+ height,
260
+ width,
261
+ prompt_embeds.dtype,
262
+ device,
263
+ generator,
264
+ latents,
265
+ )
266
+
267
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
268
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
269
+
270
+ # 7. Prepare added time ids & embeddings
271
+ add_text_embeds = pooled_prompt_embeds
272
+ if self.text_encoder_2 is None:
273
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
274
+ else:
275
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
276
+
277
+ add_time_ids = self._get_add_time_ids(
278
+ original_size,
279
+ crops_coords_top_left,
280
+ target_size,
281
+ dtype=prompt_embeds.dtype,
282
+ text_encoder_projection_dim=text_encoder_projection_dim,
283
+ )
284
+ if negative_original_size is not None and negative_target_size is not None:
285
+ negative_add_time_ids = self._get_add_time_ids(
286
+ negative_original_size,
287
+ negative_crops_coords_top_left,
288
+ negative_target_size,
289
+ dtype=prompt_embeds.dtype,
290
+ text_encoder_projection_dim=text_encoder_projection_dim,
291
+ )
292
+ else:
293
+ negative_add_time_ids = add_time_ids
294
+
295
+ if do_classifier_free_guidance:
296
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
297
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
298
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
299
+
300
+ prompt_embeds = prompt_embeds.to(device)
301
+ add_text_embeds = add_text_embeds.to(device)
302
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
303
+
304
+ # 8. Denoising loop
305
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
306
+
307
+ # 7.1 Apply denoising_end
308
+ if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
309
+ discrete_timestep_cutoff = int(
310
+ round(
311
+ self.scheduler.config.num_train_timesteps
312
+ - (denoising_end * self.scheduler.config.num_train_timesteps)
313
+ )
314
+ )
315
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
316
+ timesteps = timesteps[:num_inference_steps]
317
+
318
+ # get init conditioning scale
319
+ for attn_processor in self.unet.attn_processors.values():
320
+ if isinstance(attn_processor, IPAttnProcessor):
321
+ conditioning_scale = attn_processor.scale
322
+ break
323
+
324
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
325
+ for i, t in enumerate(timesteps):
326
+ if (i / len(timesteps) < control_guidance_start) or ((i + 1) / len(timesteps) > control_guidance_end):
327
+ self.set_scale(0.0)
328
+ else:
329
+ self.set_scale(conditioning_scale)
330
+
331
+ # expand the latents if we are doing classifier free guidance
332
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
333
+
334
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
335
+
336
+ # predict the noise residual
337
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
338
+ noise_pred = self.unet(
339
+ latent_model_input,
340
+ t,
341
+ encoder_hidden_states=prompt_embeds,
342
+ cross_attention_kwargs=cross_attention_kwargs,
343
+ added_cond_kwargs=added_cond_kwargs,
344
+ return_dict=False,
345
+ )[0]
346
+
347
+ # perform guidance
348
+ if do_classifier_free_guidance:
349
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
350
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
351
+
352
+ if do_classifier_free_guidance and guidance_rescale > 0.0:
353
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
354
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
355
+
356
+ # compute the previous noisy sample x_t -> x_t-1
357
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
358
+
359
+ # call the callback, if provided
360
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
361
+ progress_bar.update()
362
+ if callback is not None and i % callback_steps == 0:
363
+ callback(i, t, latents)
364
+
365
+ if not output_type == "latent":
366
+ # make sure the VAE is in float32 mode, as it overflows in float16
367
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
368
+
369
+ if needs_upcasting:
370
+ self.upcast_vae()
371
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
372
+
373
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
374
+
375
+ # cast back to fp16 if needed
376
+ if needs_upcasting:
377
+ self.vae.to(dtype=torch.float16)
378
+ else:
379
+ image = latents
380
+
381
+ if output_type != "latent":
382
+ # apply watermark if available
383
+ if self.watermark is not None:
384
+ image = self.watermark.apply_watermark(image)
385
+
386
+ image = self.image_processor.postprocess(image, output_type=output_type)
387
+
388
+ # Offload all models
389
+ self.maybe_free_model_hooks()
390
+
391
+ if not return_dict:
392
+ return (image,)
393
+
394
+ return StableDiffusionXLPipelineOutput(images=image)
ip_adapter/ip_adapter.py ADDED
@@ -0,0 +1,457 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import List
3
+
4
+ import torch
5
+ from diffusers import StableDiffusionPipeline
6
+ from diffusers.pipelines.controlnet import MultiControlNetModel
7
+ from PIL import Image
8
+ from safetensors import safe_open
9
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
10
+
11
+ from .utils import is_torch2_available, get_generator
12
+
13
+ if is_torch2_available():
14
+ from .attention_processor import (
15
+ AttnProcessor2_0 as AttnProcessor,
16
+ )
17
+ from .attention_processor import (
18
+ CNAttnProcessor2_0 as CNAttnProcessor,
19
+ )
20
+ from .attention_processor import (
21
+ IPAttnProcessor2_0 as IPAttnProcessor,
22
+ )
23
+ else:
24
+ from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor
25
+ from .resampler import Resampler
26
+
27
+
28
+ class ImageProjModel(torch.nn.Module):
29
+ """Projection Model"""
30
+
31
+ def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
32
+ super().__init__()
33
+
34
+ self.generator = None
35
+ self.cross_attention_dim = cross_attention_dim
36
+ self.clip_extra_context_tokens = clip_extra_context_tokens
37
+ self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
38
+ self.norm = torch.nn.LayerNorm(cross_attention_dim)
39
+
40
+ def forward(self, image_embeds):
41
+ embeds = image_embeds
42
+ clip_extra_context_tokens = self.proj(embeds).reshape(
43
+ -1, self.clip_extra_context_tokens, self.cross_attention_dim
44
+ )
45
+ clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
46
+ return clip_extra_context_tokens
47
+
48
+
49
+ class MLPProjModel(torch.nn.Module):
50
+ """SD model with image prompt"""
51
+
52
+ def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
53
+ super().__init__()
54
+
55
+ self.proj = torch.nn.Sequential(
56
+ torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
57
+ torch.nn.GELU(),
58
+ torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
59
+ torch.nn.LayerNorm(cross_attention_dim),
60
+ )
61
+
62
+ def forward(self, image_embeds):
63
+ clip_extra_context_tokens = self.proj(image_embeds)
64
+ return clip_extra_context_tokens
65
+
66
+
67
+ class IPAdapter:
68
+ def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4):
69
+ self.device = device
70
+ self.image_encoder_path = image_encoder_path
71
+ self.ip_ckpt = ip_ckpt
72
+ self.num_tokens = num_tokens
73
+
74
+ self.pipe = sd_pipe.to(self.device)
75
+ self.set_ip_adapter()
76
+
77
+ # load image encoder
78
+ # self.image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter", subfolder="models/image_encoder").to(
79
+ self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
80
+ "h94/IP-Adapter", subfolder=image_encoder_path
81
+ ).to(self.device, dtype=torch.float16)
82
+ self.clip_image_processor = CLIPImageProcessor()
83
+ # image proj model
84
+ self.image_proj_model = self.init_proj()
85
+
86
+ self.load_ip_adapter()
87
+
88
+ def init_proj(self):
89
+ image_proj_model = ImageProjModel(
90
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
91
+ clip_embeddings_dim=self.image_encoder.config.projection_dim,
92
+ clip_extra_context_tokens=self.num_tokens,
93
+ ).to(self.device, dtype=torch.float16)
94
+ return image_proj_model
95
+
96
+ def set_ip_adapter(self):
97
+ unet = self.pipe.unet
98
+ attn_procs = {}
99
+ for name in unet.attn_processors.keys():
100
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
101
+ if name.startswith("mid_block"):
102
+ hidden_size = unet.config.block_out_channels[-1]
103
+ elif name.startswith("up_blocks"):
104
+ block_id = int(name[len("up_blocks.")])
105
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
106
+ elif name.startswith("down_blocks"):
107
+ block_id = int(name[len("down_blocks.")])
108
+ hidden_size = unet.config.block_out_channels[block_id]
109
+ if cross_attention_dim is None:
110
+ attn_procs[name] = AttnProcessor()
111
+ else:
112
+ attn_procs[name] = IPAttnProcessor(
113
+ hidden_size=hidden_size,
114
+ cross_attention_dim=cross_attention_dim,
115
+ scale=1.0,
116
+ num_tokens=self.num_tokens,
117
+ ).to(self.device, dtype=torch.float16)
118
+ unet.set_attn_processor(attn_procs)
119
+ if hasattr(self.pipe, "controlnet"):
120
+ if isinstance(self.pipe.controlnet, MultiControlNetModel):
121
+ for controlnet in self.pipe.controlnet.nets:
122
+ controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
123
+ else:
124
+ self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
125
+
126
+ def load_ip_adapter(self):
127
+ if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
128
+ state_dict = {"image_proj": {}, "ip_adapter": {}}
129
+ with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
130
+ for key in f.keys():
131
+ if key.startswith("image_proj."):
132
+ state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
133
+ elif key.startswith("ip_adapter."):
134
+ state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
135
+ else:
136
+ state_dict = torch.load(self.ip_ckpt, map_location="cpu")
137
+ self.image_proj_model.load_state_dict(state_dict["image_proj"])
138
+ ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
139
+ ip_layers.load_state_dict(state_dict["ip_adapter"])
140
+
141
+ def save_ip_adapter(self, save_path):
142
+ state_dict = {
143
+ "image_proj": self.image_proj_model.state_dict(),
144
+ "ip_adapter": torch.nn.ModuleList(self.pipe.unet.attn_processors.values()).state_dict(),
145
+ }
146
+ torch.save(state_dict, save_path)
147
+
148
+ @torch.inference_mode()
149
+ def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
150
+ if pil_image is not None:
151
+ if isinstance(pil_image, Image.Image):
152
+ pil_image = [pil_image]
153
+ clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
154
+ clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
155
+ else:
156
+ clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
157
+ image_prompt_embeds = self.image_proj_model(clip_image_embeds)
158
+ uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
159
+ return image_prompt_embeds, uncond_image_prompt_embeds
160
+
161
+ def set_scale(self, scale):
162
+ for attn_processor in self.pipe.unet.attn_processors.values():
163
+ if isinstance(attn_processor, IPAttnProcessor):
164
+ attn_processor.scale = scale
165
+
166
+ def generate(
167
+ self,
168
+ pil_image=None,
169
+ clip_image_embeds=None,
170
+ prompt=None,
171
+ negative_prompt=None,
172
+ scale=1.0,
173
+ num_samples=4,
174
+ seed=None,
175
+ guidance_scale=7.5,
176
+ num_inference_steps=30,
177
+ **kwargs,
178
+ ):
179
+ self.set_scale(scale)
180
+
181
+ if pil_image is not None:
182
+ num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
183
+ else:
184
+ num_prompts = clip_image_embeds.size(0)
185
+
186
+ if prompt is None:
187
+ prompt = "best quality, high quality"
188
+ if negative_prompt is None:
189
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
190
+
191
+ if not isinstance(prompt, List):
192
+ prompt = [prompt] * num_prompts
193
+ if not isinstance(negative_prompt, List):
194
+ negative_prompt = [negative_prompt] * num_prompts
195
+
196
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
197
+ pil_image=pil_image, clip_image_embeds=clip_image_embeds
198
+ )
199
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
200
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
201
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
202
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
203
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
204
+
205
+ with torch.inference_mode():
206
+ prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
207
+ prompt,
208
+ device=self.device,
209
+ num_images_per_prompt=num_samples,
210
+ do_classifier_free_guidance=True,
211
+ negative_prompt=negative_prompt,
212
+ )
213
+ prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
214
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
215
+
216
+ generator = get_generator(seed, self.device)
217
+
218
+ images = self.pipe(
219
+ prompt_embeds=prompt_embeds,
220
+ negative_prompt_embeds=negative_prompt_embeds,
221
+ guidance_scale=guidance_scale,
222
+ num_inference_steps=num_inference_steps,
223
+ generator=generator,
224
+ **kwargs,
225
+ ).images
226
+
227
+ return images
228
+
229
+
230
+ class IPAdapterXL(IPAdapter):
231
+ """SDXL"""
232
+
233
+ def generate(
234
+ self,
235
+ pil_image,
236
+ prompt=None,
237
+ negative_prompt=None,
238
+ scale=1.0,
239
+ num_samples=4,
240
+ seed=None,
241
+ num_inference_steps=30,
242
+ image_prompt_embeds=None,
243
+ **kwargs,
244
+ ):
245
+ self.set_scale(scale)
246
+
247
+ if pil_image is not None:
248
+ num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
249
+ else:
250
+ num_prompts = 1
251
+
252
+ if prompt is None:
253
+ prompt = "best quality, high quality"
254
+ if negative_prompt is None:
255
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
256
+
257
+ if not isinstance(prompt, List):
258
+ prompt = [prompt] * num_prompts
259
+ if not isinstance(negative_prompt, List):
260
+ negative_prompt = [negative_prompt] * num_prompts
261
+
262
+ if pil_image is None:
263
+ assert image_prompt_embeds is not None
264
+ clip_image = self.clip_image_processor(
265
+ images=[Image.new("RGB", (128, 128))], return_tensors="pt"
266
+ ).pixel_values
267
+ clip_image = clip_image.to(self.device, dtype=torch.float16)
268
+ uncond_clip_image_embeds = self.image_encoder(torch.zeros_like(clip_image)).image_embeds
269
+ uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
270
+ else:
271
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
272
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
273
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
274
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
275
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
276
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
277
+
278
+ with torch.inference_mode():
279
+ (
280
+ prompt_embeds,
281
+ negative_prompt_embeds,
282
+ pooled_prompt_embeds,
283
+ negative_pooled_prompt_embeds,
284
+ ) = self.pipe.encode_prompt(
285
+ prompt,
286
+ num_images_per_prompt=num_samples,
287
+ do_classifier_free_guidance=True,
288
+ negative_prompt=negative_prompt,
289
+ )
290
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
291
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
292
+
293
+ self.generator = get_generator(seed, self.device)
294
+
295
+ images = self.pipe(
296
+ prompt_embeds=prompt_embeds,
297
+ negative_prompt_embeds=negative_prompt_embeds,
298
+ pooled_prompt_embeds=pooled_prompt_embeds,
299
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
300
+ num_inference_steps=num_inference_steps,
301
+ generator=self.generator,
302
+ **kwargs,
303
+ ).images
304
+
305
+ return images
306
+
307
+
308
+ class IPAdapterPlus(IPAdapter):
309
+ """IP-Adapter with fine-grained features"""
310
+
311
+ def init_proj(self):
312
+ image_proj_model = Resampler(
313
+ dim=self.pipe.unet.config.cross_attention_dim,
314
+ depth=4,
315
+ dim_head=64,
316
+ heads=12,
317
+ num_queries=self.num_tokens,
318
+ embedding_dim=self.image_encoder.config.hidden_size,
319
+ output_dim=self.pipe.unet.config.cross_attention_dim,
320
+ ff_mult=4,
321
+ ).to(self.device, dtype=torch.float16)
322
+ return image_proj_model
323
+
324
+ @torch.inference_mode()
325
+ def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
326
+ if isinstance(pil_image, Image.Image):
327
+ pil_image = [pil_image]
328
+ clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
329
+ clip_image = clip_image.to(self.device, dtype=torch.float16)
330
+ clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
331
+ image_prompt_embeds = self.image_proj_model(clip_image_embeds)
332
+ uncond_clip_image_embeds = self.image_encoder(
333
+ torch.zeros_like(clip_image), output_hidden_states=True
334
+ ).hidden_states[-2]
335
+ uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
336
+ return image_prompt_embeds, uncond_image_prompt_embeds
337
+
338
+
339
+ class IPAdapterFull(IPAdapterPlus):
340
+ """IP-Adapter with full features"""
341
+
342
+ def init_proj(self):
343
+ image_proj_model = MLPProjModel(
344
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
345
+ clip_embeddings_dim=self.image_encoder.config.hidden_size,
346
+ ).to(self.device, dtype=torch.float16)
347
+ return image_proj_model
348
+
349
+
350
+ class IPAdapterPlusXL(IPAdapter):
351
+ """SDXL"""
352
+
353
+ def init_proj(self):
354
+ image_proj_model = Resampler(
355
+ dim=1280,
356
+ depth=4,
357
+ dim_head=64,
358
+ heads=20,
359
+ num_queries=self.num_tokens,
360
+ embedding_dim=self.image_encoder.config.hidden_size,
361
+ output_dim=self.pipe.unet.config.cross_attention_dim,
362
+ ff_mult=4,
363
+ ).to(self.device, dtype=torch.float16)
364
+ return image_proj_model
365
+
366
+ @torch.inference_mode()
367
+ def get_image_embeds(self, pil_image, skip_uncond=False):
368
+ if isinstance(pil_image, Image.Image):
369
+ pil_image = [pil_image]
370
+ clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
371
+ else:
372
+ clip_image = pil_image
373
+ clip_image = clip_image.to(self.device, dtype=torch.float16)
374
+ clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
375
+ image_prompt_embeds = self.image_proj_model(clip_image_embeds)
376
+ if skip_uncond:
377
+ return image_prompt_embeds
378
+ uncond_clip_image_embeds = self.image_encoder(
379
+ torch.zeros_like(clip_image), output_hidden_states=True
380
+ ).hidden_states[-2]
381
+ uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
382
+ return image_prompt_embeds, uncond_image_prompt_embeds
383
+
384
+ def get_uncond_embeds(self):
385
+ clip_image = self.clip_image_processor(images=[Image.new("RGB", (128, 128))], return_tensors="pt").pixel_values
386
+ clip_image = clip_image.to(self.device, dtype=torch.float16)
387
+ uncond_clip_image_embeds = self.image_encoder(
388
+ torch.zeros_like(clip_image), output_hidden_states=True
389
+ ).hidden_states[-2]
390
+ uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
391
+ return uncond_image_prompt_embeds
392
+
393
+ def generate(
394
+ self,
395
+ pil_image=None,
396
+ prompt=None,
397
+ negative_prompt=None,
398
+ scale=1.0,
399
+ num_samples=4,
400
+ seed=None,
401
+ num_inference_steps=30,
402
+ image_prompt_embeds=None,
403
+ **kwargs,
404
+ ):
405
+ self.set_scale(scale)
406
+
407
+ num_prompts = 1 # if isinstance(pil_image, Image.Image) else len(pil_image)
408
+
409
+ if prompt is None:
410
+ prompt = "best quality, high quality"
411
+ if negative_prompt is None:
412
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
413
+
414
+ if not isinstance(prompt, List):
415
+ prompt = [prompt] * num_prompts
416
+ if not isinstance(negative_prompt, List):
417
+ negative_prompt = [negative_prompt] * num_prompts
418
+
419
+ if image_prompt_embeds is None:
420
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
421
+ else:
422
+ uncond_image_prompt_embeds = self.get_uncond_embeds()
423
+
424
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
425
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
426
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
427
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
428
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
429
+
430
+ with torch.inference_mode():
431
+ (
432
+ prompt_embeds,
433
+ negative_prompt_embeds,
434
+ pooled_prompt_embeds,
435
+ negative_pooled_prompt_embeds,
436
+ ) = self.pipe.encode_prompt(
437
+ prompt,
438
+ num_images_per_prompt=num_samples,
439
+ do_classifier_free_guidance=True,
440
+ negative_prompt=negative_prompt,
441
+ )
442
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
443
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
444
+
445
+ generator = get_generator(seed, self.device)
446
+
447
+ images = self.pipe(
448
+ prompt_embeds=prompt_embeds,
449
+ negative_prompt_embeds=negative_prompt_embeds,
450
+ pooled_prompt_embeds=pooled_prompt_embeds,
451
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
452
+ num_inference_steps=num_inference_steps,
453
+ generator=generator,
454
+ **kwargs,
455
+ ).images
456
+
457
+ return images
ip_adapter/ip_adapter_faceid.py ADDED
@@ -0,0 +1,542 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import List
3
+
4
+ import torch
5
+ from diffusers import StableDiffusionPipeline
6
+ from diffusers.pipelines.controlnet import MultiControlNetModel
7
+ from PIL import Image
8
+ from safetensors import safe_open
9
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
10
+
11
+ from .attention_processor_faceid import LoRAAttnProcessor, LoRAIPAttnProcessor
12
+ from .utils import is_torch2_available, get_generator
13
+
14
+ USE_DAFAULT_ATTN = False # should be True for visualization_attnmap
15
+ if is_torch2_available() and (not USE_DAFAULT_ATTN):
16
+ from .attention_processor_faceid import (
17
+ LoRAAttnProcessor2_0 as LoRAAttnProcessor,
18
+ )
19
+ from .attention_processor_faceid import (
20
+ LoRAIPAttnProcessor2_0 as LoRAIPAttnProcessor,
21
+ )
22
+ else:
23
+ from .attention_processor_faceid import LoRAAttnProcessor, LoRAIPAttnProcessor
24
+ from .resampler import PerceiverAttention, FeedForward
25
+
26
+
27
+ class FacePerceiverResampler(torch.nn.Module):
28
+ def __init__(
29
+ self,
30
+ *,
31
+ dim=768,
32
+ depth=4,
33
+ dim_head=64,
34
+ heads=16,
35
+ embedding_dim=1280,
36
+ output_dim=768,
37
+ ff_mult=4,
38
+ ):
39
+ super().__init__()
40
+
41
+ self.proj_in = torch.nn.Linear(embedding_dim, dim)
42
+ self.proj_out = torch.nn.Linear(dim, output_dim)
43
+ self.norm_out = torch.nn.LayerNorm(output_dim)
44
+ self.layers = torch.nn.ModuleList([])
45
+ for _ in range(depth):
46
+ self.layers.append(
47
+ torch.nn.ModuleList(
48
+ [
49
+ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
50
+ FeedForward(dim=dim, mult=ff_mult),
51
+ ]
52
+ )
53
+ )
54
+
55
+ def forward(self, latents, x):
56
+ x = self.proj_in(x)
57
+ for attn, ff in self.layers:
58
+ latents = attn(x, latents) + latents
59
+ latents = ff(latents) + latents
60
+ latents = self.proj_out(latents)
61
+ return self.norm_out(latents)
62
+
63
+
64
+ class MLPProjModel(torch.nn.Module):
65
+ def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4):
66
+ super().__init__()
67
+
68
+ self.cross_attention_dim = cross_attention_dim
69
+ self.num_tokens = num_tokens
70
+
71
+ self.proj = torch.nn.Sequential(
72
+ torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
73
+ torch.nn.GELU(),
74
+ torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
75
+ )
76
+ self.norm = torch.nn.LayerNorm(cross_attention_dim)
77
+
78
+ def forward(self, id_embeds):
79
+ x = self.proj(id_embeds)
80
+ x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
81
+ x = self.norm(x)
82
+ return x
83
+
84
+
85
+ class ProjPlusModel(torch.nn.Module):
86
+ def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, clip_embeddings_dim=1280, num_tokens=4):
87
+ super().__init__()
88
+
89
+ self.cross_attention_dim = cross_attention_dim
90
+ self.num_tokens = num_tokens
91
+
92
+ self.proj = torch.nn.Sequential(
93
+ torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
94
+ torch.nn.GELU(),
95
+ torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
96
+ )
97
+ self.norm = torch.nn.LayerNorm(cross_attention_dim)
98
+
99
+ self.perceiver_resampler = FacePerceiverResampler(
100
+ dim=cross_attention_dim,
101
+ depth=4,
102
+ dim_head=64,
103
+ heads=cross_attention_dim // 64,
104
+ embedding_dim=clip_embeddings_dim,
105
+ output_dim=cross_attention_dim,
106
+ ff_mult=4,
107
+ )
108
+
109
+ def forward(self, id_embeds, clip_embeds, shortcut=False, scale=1.0):
110
+
111
+ x = self.proj(id_embeds)
112
+ x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
113
+ x = self.norm(x)
114
+ out = self.perceiver_resampler(x, clip_embeds)
115
+ if shortcut:
116
+ out = x + scale * out
117
+ return out
118
+
119
+
120
+ class IPAdapterFaceID:
121
+ def __init__(self, sd_pipe, ip_ckpt, device, lora_rank=128, num_tokens=4, torch_dtype=torch.float16):
122
+ self.device = device
123
+ self.ip_ckpt = ip_ckpt
124
+ self.lora_rank = lora_rank
125
+ self.num_tokens = num_tokens
126
+ self.torch_dtype = torch_dtype
127
+
128
+ self.pipe = sd_pipe.to(self.device)
129
+ self.set_ip_adapter()
130
+
131
+ # image proj model
132
+ self.image_proj_model = self.init_proj()
133
+
134
+ self.load_ip_adapter()
135
+
136
+ def init_proj(self):
137
+ image_proj_model = MLPProjModel(
138
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
139
+ id_embeddings_dim=512,
140
+ num_tokens=self.num_tokens,
141
+ ).to(self.device, dtype=self.torch_dtype)
142
+ return image_proj_model
143
+
144
+ def set_ip_adapter(self):
145
+ unet = self.pipe.unet
146
+ attn_procs = {}
147
+ for name in unet.attn_processors.keys():
148
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
149
+ if name.startswith("mid_block"):
150
+ hidden_size = unet.config.block_out_channels[-1]
151
+ elif name.startswith("up_blocks"):
152
+ block_id = int(name[len("up_blocks.")])
153
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
154
+ elif name.startswith("down_blocks"):
155
+ block_id = int(name[len("down_blocks.")])
156
+ hidden_size = unet.config.block_out_channels[block_id]
157
+ if cross_attention_dim is None:
158
+ attn_procs[name] = LoRAAttnProcessor(
159
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank,
160
+ ).to(self.device, dtype=self.torch_dtype)
161
+ else:
162
+ attn_procs[name] = LoRAIPAttnProcessor(
163
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=self.lora_rank, num_tokens=self.num_tokens,
164
+ ).to(self.device, dtype=self.torch_dtype)
165
+ unet.set_attn_processor(attn_procs)
166
+
167
+ def load_ip_adapter(self):
168
+ if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
169
+ state_dict = {"image_proj": {}, "ip_adapter": {}}
170
+ with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
171
+ for key in f.keys():
172
+ if key.startswith("image_proj."):
173
+ state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
174
+ elif key.startswith("ip_adapter."):
175
+ state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
176
+ else:
177
+ state_dict = torch.load(self.ip_ckpt, map_location="cpu")
178
+ self.image_proj_model.load_state_dict(state_dict["image_proj"])
179
+ ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
180
+ ip_layers.load_state_dict(state_dict["ip_adapter"])
181
+
182
+ @torch.inference_mode()
183
+ def get_image_embeds(self, faceid_embeds):
184
+
185
+ faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
186
+ image_prompt_embeds = self.image_proj_model(faceid_embeds)
187
+ uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds))
188
+ return image_prompt_embeds, uncond_image_prompt_embeds
189
+
190
+ def set_scale(self, scale):
191
+ for attn_processor in self.pipe.unet.attn_processors.values():
192
+ if isinstance(attn_processor, LoRAIPAttnProcessor):
193
+ attn_processor.scale = scale
194
+
195
+ def generate(
196
+ self,
197
+ faceid_embeds=None,
198
+ prompt=None,
199
+ negative_prompt=None,
200
+ scale=1.0,
201
+ num_samples=4,
202
+ seed=None,
203
+ guidance_scale=7.5,
204
+ num_inference_steps=30,
205
+ **kwargs,
206
+ ):
207
+ self.set_scale(scale)
208
+
209
+
210
+ num_prompts = faceid_embeds.size(0)
211
+
212
+ if prompt is None:
213
+ prompt = "best quality, high quality"
214
+ if negative_prompt is None:
215
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
216
+
217
+ if not isinstance(prompt, List):
218
+ prompt = [prompt] * num_prompts
219
+ if not isinstance(negative_prompt, List):
220
+ negative_prompt = [negative_prompt] * num_prompts
221
+
222
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds)
223
+
224
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
225
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
226
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
227
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
228
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
229
+
230
+ with torch.inference_mode():
231
+ prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
232
+ prompt,
233
+ device=self.device,
234
+ num_images_per_prompt=num_samples,
235
+ do_classifier_free_guidance=True,
236
+ negative_prompt=negative_prompt,
237
+ )
238
+ prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
239
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
240
+
241
+ generator = get_generator(seed, self.device)
242
+
243
+ images = self.pipe(
244
+ prompt_embeds=prompt_embeds,
245
+ negative_prompt_embeds=negative_prompt_embeds,
246
+ guidance_scale=guidance_scale,
247
+ num_inference_steps=num_inference_steps,
248
+ generator=generator,
249
+ **kwargs,
250
+ ).images
251
+
252
+ return images
253
+
254
+
255
+ class IPAdapterFaceIDPlus:
256
+ def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, lora_rank=128, num_tokens=4, torch_dtype=torch.float16):
257
+ self.device = device
258
+ self.image_encoder_path = image_encoder_path
259
+ self.ip_ckpt = ip_ckpt
260
+ self.lora_rank = lora_rank
261
+ self.num_tokens = num_tokens
262
+ self.torch_dtype = torch_dtype
263
+
264
+ self.pipe = sd_pipe.to(self.device)
265
+ self.set_ip_adapter()
266
+
267
+ # load image encoder
268
+ self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
269
+ self.device, dtype=self.torch_dtype
270
+ )
271
+ self.clip_image_processor = CLIPImageProcessor()
272
+ # image proj model
273
+ self.image_proj_model = self.init_proj()
274
+
275
+ self.load_ip_adapter()
276
+
277
+ def init_proj(self):
278
+ image_proj_model = ProjPlusModel(
279
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
280
+ id_embeddings_dim=512,
281
+ clip_embeddings_dim=self.image_encoder.config.hidden_size,
282
+ num_tokens=self.num_tokens,
283
+ ).to(self.device, dtype=self.torch_dtype)
284
+ return image_proj_model
285
+
286
+ def set_ip_adapter(self):
287
+ unet = self.pipe.unet
288
+ attn_procs = {}
289
+ for name in unet.attn_processors.keys():
290
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
291
+ if name.startswith("mid_block"):
292
+ hidden_size = unet.config.block_out_channels[-1]
293
+ elif name.startswith("up_blocks"):
294
+ block_id = int(name[len("up_blocks.")])
295
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
296
+ elif name.startswith("down_blocks"):
297
+ block_id = int(name[len("down_blocks.")])
298
+ hidden_size = unet.config.block_out_channels[block_id]
299
+ if cross_attention_dim is None:
300
+ attn_procs[name] = LoRAAttnProcessor(
301
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank,
302
+ ).to(self.device, dtype=self.torch_dtype)
303
+ else:
304
+ attn_procs[name] = LoRAIPAttnProcessor(
305
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=self.lora_rank, num_tokens=self.num_tokens,
306
+ ).to(self.device, dtype=self.torch_dtype)
307
+ unet.set_attn_processor(attn_procs)
308
+
309
+ def load_ip_adapter(self):
310
+ if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
311
+ state_dict = {"image_proj": {}, "ip_adapter": {}}
312
+ with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
313
+ for key in f.keys():
314
+ if key.startswith("image_proj."):
315
+ state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
316
+ elif key.startswith("ip_adapter."):
317
+ state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
318
+ else:
319
+ state_dict = torch.load(self.ip_ckpt, map_location="cpu")
320
+ self.image_proj_model.load_state_dict(state_dict["image_proj"])
321
+ ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
322
+ ip_layers.load_state_dict(state_dict["ip_adapter"])
323
+
324
+ @torch.inference_mode()
325
+ def get_image_embeds(self, faceid_embeds, face_image, s_scale, shortcut):
326
+ if isinstance(face_image, Image.Image):
327
+ pil_image = [face_image]
328
+ clip_image = self.clip_image_processor(images=face_image, return_tensors="pt").pixel_values
329
+ clip_image = clip_image.to(self.device, dtype=self.torch_dtype)
330
+ clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
331
+ uncond_clip_image_embeds = self.image_encoder(
332
+ torch.zeros_like(clip_image), output_hidden_states=True
333
+ ).hidden_states[-2]
334
+
335
+ faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
336
+ image_prompt_embeds = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale)
337
+ uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale)
338
+ return image_prompt_embeds, uncond_image_prompt_embeds
339
+
340
+ def set_scale(self, scale):
341
+ for attn_processor in self.pipe.unet.attn_processors.values():
342
+ if isinstance(attn_processor, LoRAIPAttnProcessor):
343
+ attn_processor.scale = scale
344
+
345
+ def generate(
346
+ self,
347
+ face_image=None,
348
+ faceid_embeds=None,
349
+ prompt=None,
350
+ negative_prompt=None,
351
+ scale=1.0,
352
+ num_samples=4,
353
+ seed=None,
354
+ guidance_scale=7.5,
355
+ num_inference_steps=30,
356
+ s_scale=1.0,
357
+ shortcut=False,
358
+ **kwargs,
359
+ ):
360
+ self.set_scale(scale)
361
+
362
+
363
+ num_prompts = faceid_embeds.size(0)
364
+
365
+ if prompt is None:
366
+ prompt = "best quality, high quality"
367
+ if negative_prompt is None:
368
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
369
+
370
+ if not isinstance(prompt, List):
371
+ prompt = [prompt] * num_prompts
372
+ if not isinstance(negative_prompt, List):
373
+ negative_prompt = [negative_prompt] * num_prompts
374
+
375
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds, face_image, s_scale, shortcut)
376
+
377
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
378
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
379
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
380
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
381
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
382
+
383
+ with torch.inference_mode():
384
+ prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
385
+ prompt,
386
+ device=self.device,
387
+ num_images_per_prompt=num_samples,
388
+ do_classifier_free_guidance=True,
389
+ negative_prompt=negative_prompt,
390
+ )
391
+ prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
392
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
393
+
394
+ generator = get_generator(seed, self.device)
395
+
396
+ images = self.pipe(
397
+ prompt_embeds=prompt_embeds,
398
+ negative_prompt_embeds=negative_prompt_embeds,
399
+ guidance_scale=guidance_scale,
400
+ num_inference_steps=num_inference_steps,
401
+ generator=generator,
402
+ **kwargs,
403
+ ).images
404
+
405
+ return images
406
+
407
+
408
+ class IPAdapterFaceIDXL(IPAdapterFaceID):
409
+ """SDXL"""
410
+
411
+ def generate(
412
+ self,
413
+ faceid_embeds=None,
414
+ prompt=None,
415
+ negative_prompt=None,
416
+ scale=1.0,
417
+ num_samples=4,
418
+ seed=None,
419
+ num_inference_steps=30,
420
+ **kwargs,
421
+ ):
422
+ self.set_scale(scale)
423
+
424
+ num_prompts = faceid_embeds.size(0)
425
+
426
+ if prompt is None:
427
+ prompt = "best quality, high quality"
428
+ if negative_prompt is None:
429
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
430
+
431
+ if not isinstance(prompt, List):
432
+ prompt = [prompt] * num_prompts
433
+ if not isinstance(negative_prompt, List):
434
+ negative_prompt = [negative_prompt] * num_prompts
435
+
436
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds)
437
+
438
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
439
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
440
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
441
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
442
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
443
+
444
+ with torch.inference_mode():
445
+ (
446
+ prompt_embeds,
447
+ negative_prompt_embeds,
448
+ pooled_prompt_embeds,
449
+ negative_pooled_prompt_embeds,
450
+ ) = self.pipe.encode_prompt(
451
+ prompt,
452
+ num_images_per_prompt=num_samples,
453
+ do_classifier_free_guidance=True,
454
+ negative_prompt=negative_prompt,
455
+ )
456
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
457
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
458
+
459
+ generator = get_generator(seed, self.device)
460
+
461
+ images = self.pipe(
462
+ prompt_embeds=prompt_embeds,
463
+ negative_prompt_embeds=negative_prompt_embeds,
464
+ pooled_prompt_embeds=pooled_prompt_embeds,
465
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
466
+ num_inference_steps=num_inference_steps,
467
+ generator=generator,
468
+ **kwargs,
469
+ ).images
470
+
471
+ return images
472
+
473
+
474
+ class IPAdapterFaceIDPlusXL(IPAdapterFaceIDPlus):
475
+ """SDXL"""
476
+
477
+ def generate(
478
+ self,
479
+ face_image=None,
480
+ faceid_embeds=None,
481
+ prompt=None,
482
+ negative_prompt=None,
483
+ scale=1.0,
484
+ num_samples=4,
485
+ seed=None,
486
+ guidance_scale=7.5,
487
+ num_inference_steps=30,
488
+ s_scale=1.0,
489
+ shortcut=True,
490
+ **kwargs,
491
+ ):
492
+ self.set_scale(scale)
493
+
494
+ num_prompts = faceid_embeds.size(0)
495
+
496
+ if prompt is None:
497
+ prompt = "best quality, high quality"
498
+ if negative_prompt is None:
499
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
500
+
501
+ if not isinstance(prompt, List):
502
+ prompt = [prompt] * num_prompts
503
+ if not isinstance(negative_prompt, List):
504
+ negative_prompt = [negative_prompt] * num_prompts
505
+
506
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds, face_image, s_scale, shortcut)
507
+
508
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
509
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
510
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
511
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
512
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
513
+
514
+ with torch.inference_mode():
515
+ (
516
+ prompt_embeds,
517
+ negative_prompt_embeds,
518
+ pooled_prompt_embeds,
519
+ negative_pooled_prompt_embeds,
520
+ ) = self.pipe.encode_prompt(
521
+ prompt,
522
+ num_images_per_prompt=num_samples,
523
+ do_classifier_free_guidance=True,
524
+ negative_prompt=negative_prompt,
525
+ )
526
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
527
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
528
+
529
+ generator = get_generator(seed, self.device)
530
+
531
+ images = self.pipe(
532
+ prompt_embeds=prompt_embeds,
533
+ negative_prompt_embeds=negative_prompt_embeds,
534
+ pooled_prompt_embeds=pooled_prompt_embeds,
535
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
536
+ num_inference_steps=num_inference_steps,
537
+ generator=generator,
538
+ guidance_scale=guidance_scale,
539
+ **kwargs,
540
+ ).images
541
+
542
+ return images
ip_adapter/ip_adapter_faceid_separate.py ADDED
@@ -0,0 +1,556 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import List
3
+
4
+ import torch
5
+ from diffusers import StableDiffusionPipeline
6
+ from diffusers.pipelines.controlnet import MultiControlNetModel
7
+ from PIL import Image
8
+ from safetensors import safe_open
9
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
10
+
11
+ from .utils import is_torch2_available, get_generator
12
+
13
+ USE_DAFAULT_ATTN = False # should be True for visualization_attnmap
14
+ if is_torch2_available() and (not USE_DAFAULT_ATTN):
15
+ from .attention_processor import (
16
+ AttnProcessor2_0 as AttnProcessor,
17
+ )
18
+ from .attention_processor import (
19
+ IPAttnProcessor2_0 as IPAttnProcessor,
20
+ )
21
+ else:
22
+ from .attention_processor import AttnProcessor, IPAttnProcessor
23
+ from .resampler import PerceiverAttention, FeedForward
24
+
25
+
26
+ class FacePerceiverResampler(torch.nn.Module):
27
+ def __init__(
28
+ self,
29
+ *,
30
+ dim=768,
31
+ depth=4,
32
+ dim_head=64,
33
+ heads=16,
34
+ embedding_dim=1280,
35
+ output_dim=768,
36
+ ff_mult=4,
37
+ ):
38
+ super().__init__()
39
+
40
+ self.proj_in = torch.nn.Linear(embedding_dim, dim)
41
+ self.proj_out = torch.nn.Linear(dim, output_dim)
42
+ self.norm_out = torch.nn.LayerNorm(output_dim)
43
+ self.layers = torch.nn.ModuleList([])
44
+ for _ in range(depth):
45
+ self.layers.append(
46
+ torch.nn.ModuleList(
47
+ [
48
+ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
49
+ FeedForward(dim=dim, mult=ff_mult),
50
+ ]
51
+ )
52
+ )
53
+
54
+ def forward(self, latents, x):
55
+ x = self.proj_in(x)
56
+ for attn, ff in self.layers:
57
+ latents = attn(x, latents) + latents
58
+ latents = ff(latents) + latents
59
+ latents = self.proj_out(latents)
60
+ return self.norm_out(latents)
61
+
62
+
63
+ class MLPProjModel(torch.nn.Module):
64
+ def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4):
65
+ super().__init__()
66
+
67
+ self.cross_attention_dim = cross_attention_dim
68
+ self.num_tokens = num_tokens
69
+
70
+ self.proj = torch.nn.Sequential(
71
+ torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
72
+ torch.nn.GELU(),
73
+ torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
74
+ )
75
+ self.norm = torch.nn.LayerNorm(cross_attention_dim)
76
+
77
+ def forward(self, id_embeds):
78
+ x = self.proj(id_embeds)
79
+ x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
80
+ x = self.norm(x)
81
+ return x
82
+
83
+
84
+ class ProjPlusModel(torch.nn.Module):
85
+ def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, clip_embeddings_dim=1280, num_tokens=4):
86
+ super().__init__()
87
+
88
+ self.cross_attention_dim = cross_attention_dim
89
+ self.num_tokens = num_tokens
90
+
91
+ self.proj = torch.nn.Sequential(
92
+ torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
93
+ torch.nn.GELU(),
94
+ torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
95
+ )
96
+ self.norm = torch.nn.LayerNorm(cross_attention_dim)
97
+
98
+ self.perceiver_resampler = FacePerceiverResampler(
99
+ dim=cross_attention_dim,
100
+ depth=4,
101
+ dim_head=64,
102
+ heads=cross_attention_dim // 64,
103
+ embedding_dim=clip_embeddings_dim,
104
+ output_dim=cross_attention_dim,
105
+ ff_mult=4,
106
+ )
107
+
108
+ def forward(self, id_embeds, clip_embeds, shortcut=False, scale=1.0):
109
+
110
+ x = self.proj(id_embeds)
111
+ x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
112
+ x = self.norm(x)
113
+ out = self.perceiver_resampler(x, clip_embeds)
114
+ if shortcut:
115
+ out = x + scale * out
116
+ return out
117
+
118
+
119
+ class IPAdapterFaceID:
120
+ def __init__(self, sd_pipe, ip_ckpt, device, num_tokens=4, n_cond=1, torch_dtype=torch.float16):
121
+ self.device = device
122
+ self.ip_ckpt = ip_ckpt
123
+ self.num_tokens = num_tokens
124
+ self.n_cond = n_cond
125
+ self.torch_dtype = torch_dtype
126
+
127
+ self.pipe = sd_pipe.to(self.device)
128
+ self.set_ip_adapter()
129
+
130
+ # image proj model
131
+ self.image_proj_model = self.init_proj()
132
+
133
+ self.load_ip_adapter()
134
+
135
+ def init_proj(self):
136
+ image_proj_model = MLPProjModel(
137
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
138
+ id_embeddings_dim=512,
139
+ num_tokens=self.num_tokens,
140
+ ).to(self.device, dtype=self.torch_dtype)
141
+ return image_proj_model
142
+
143
+ def set_ip_adapter(self):
144
+ unet = self.pipe.unet
145
+ attn_procs = {}
146
+ for name in unet.attn_processors.keys():
147
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
148
+ if name.startswith("mid_block"):
149
+ hidden_size = unet.config.block_out_channels[-1]
150
+ elif name.startswith("up_blocks"):
151
+ block_id = int(name[len("up_blocks.")])
152
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
153
+ elif name.startswith("down_blocks"):
154
+ block_id = int(name[len("down_blocks.")])
155
+ hidden_size = unet.config.block_out_channels[block_id]
156
+ if cross_attention_dim is None:
157
+ attn_procs[name] = AttnProcessor()
158
+ else:
159
+ attn_procs[name] = IPAttnProcessor(
160
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, num_tokens=self.num_tokens*self.n_cond,
161
+ ).to(self.device, dtype=self.torch_dtype)
162
+ unet.set_attn_processor(attn_procs)
163
+
164
+ def load_ip_adapter(self):
165
+ if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
166
+ state_dict = {"image_proj": {}, "ip_adapter": {}}
167
+ with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
168
+ for key in f.keys():
169
+ if key.startswith("image_proj."):
170
+ state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
171
+ elif key.startswith("ip_adapter."):
172
+ state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
173
+ else:
174
+ state_dict = torch.load(self.ip_ckpt, map_location="cpu")
175
+ self.image_proj_model.load_state_dict(state_dict["image_proj"])
176
+ ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
177
+ ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
178
+
179
+ @torch.inference_mode()
180
+ def get_image_embeds(self, faceid_embeds):
181
+
182
+ multi_face = False
183
+ if faceid_embeds.dim() == 3:
184
+ multi_face = True
185
+ b, n, c = faceid_embeds.shape
186
+ faceid_embeds = faceid_embeds.reshape(b*n, c)
187
+
188
+ faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
189
+ image_prompt_embeds = self.image_proj_model(faceid_embeds)
190
+ uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds))
191
+ if multi_face:
192
+ c = image_prompt_embeds.size(-1)
193
+ image_prompt_embeds = image_prompt_embeds.reshape(b, -1, c)
194
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.reshape(b, -1, c)
195
+
196
+ return image_prompt_embeds, uncond_image_prompt_embeds
197
+
198
+ def set_scale(self, scale):
199
+ for attn_processor in self.pipe.unet.attn_processors.values():
200
+ if isinstance(attn_processor, IPAttnProcessor):
201
+ attn_processor.scale = scale
202
+
203
+ def generate(
204
+ self,
205
+ faceid_embeds=None,
206
+ prompt=None,
207
+ negative_prompt=None,
208
+ scale=1.0,
209
+ num_samples=4,
210
+ seed=None,
211
+ guidance_scale=7.5,
212
+ num_inference_steps=30,
213
+ **kwargs,
214
+ ):
215
+ self.set_scale(scale)
216
+
217
+ num_prompts = faceid_embeds.size(0)
218
+
219
+ if prompt is None:
220
+ prompt = "best quality, high quality"
221
+ if negative_prompt is None:
222
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
223
+
224
+ if not isinstance(prompt, List):
225
+ prompt = [prompt] * num_prompts
226
+ else:
227
+ faceid_embeds = faceid_embeds.repeat(num_samples, 1, 1)
228
+ num_samples = 1
229
+
230
+ if not isinstance(negative_prompt, List):
231
+ negative_prompt = [negative_prompt] * num_prompts
232
+
233
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds)
234
+
235
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
236
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
237
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
238
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
239
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
240
+
241
+ with torch.inference_mode():
242
+ prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
243
+ prompt,
244
+ device=self.device,
245
+ num_images_per_prompt=num_samples,
246
+ do_classifier_free_guidance=True,
247
+ negative_prompt=negative_prompt,
248
+ )
249
+ prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
250
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
251
+
252
+ generator = get_generator(seed, self.device)
253
+
254
+ images = self.pipe(
255
+ prompt_embeds=prompt_embeds,
256
+ negative_prompt_embeds=negative_prompt_embeds,
257
+ guidance_scale=guidance_scale,
258
+ num_inference_steps=num_inference_steps,
259
+ generator=generator,
260
+ num_images_per_prompt=num_samples,
261
+ **kwargs,
262
+ ).images
263
+
264
+ return images
265
+
266
+
267
+ class IPAdapterFaceIDPlus:
268
+ def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, torch_dtype=torch.float16):
269
+ self.device = device
270
+ self.image_encoder_path = image_encoder_path
271
+ self.ip_ckpt = ip_ckpt
272
+ self.num_tokens = num_tokens
273
+ self.torch_dtype = torch_dtype
274
+
275
+ self.pipe = sd_pipe.to(self.device)
276
+ self.set_ip_adapter()
277
+
278
+ # load image encoder
279
+ self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
280
+ self.device, dtype=self.torch_dtype
281
+ )
282
+ self.clip_image_processor = CLIPImageProcessor()
283
+ # image proj model
284
+ self.image_proj_model = self.init_proj()
285
+
286
+ self.load_ip_adapter()
287
+
288
+ def init_proj(self):
289
+ image_proj_model = ProjPlusModel(
290
+ cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
291
+ id_embeddings_dim=512,
292
+ clip_embeddings_dim=self.image_encoder.config.hidden_size,
293
+ num_tokens=self.num_tokens,
294
+ ).to(self.device, dtype=self.torch_dtype)
295
+ return image_proj_model
296
+
297
+ def set_ip_adapter(self):
298
+ unet = self.pipe.unet
299
+ attn_procs = {}
300
+ for name in unet.attn_processors.keys():
301
+ cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
302
+ if name.startswith("mid_block"):
303
+ hidden_size = unet.config.block_out_channels[-1]
304
+ elif name.startswith("up_blocks"):
305
+ block_id = int(name[len("up_blocks.")])
306
+ hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
307
+ elif name.startswith("down_blocks"):
308
+ block_id = int(name[len("down_blocks.")])
309
+ hidden_size = unet.config.block_out_channels[block_id]
310
+ if cross_attention_dim is None:
311
+ attn_procs[name] = AttnProcessor()
312
+ else:
313
+ attn_procs[name] = IPAttnProcessor(
314
+ hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, num_tokens=self.num_tokens,
315
+ ).to(self.device, dtype=self.torch_dtype)
316
+ unet.set_attn_processor(attn_procs)
317
+
318
+ def load_ip_adapter(self):
319
+ if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
320
+ state_dict = {"image_proj": {}, "ip_adapter": {}}
321
+ with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
322
+ for key in f.keys():
323
+ if key.startswith("image_proj."):
324
+ state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
325
+ elif key.startswith("ip_adapter."):
326
+ state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
327
+ else:
328
+ state_dict = torch.load(self.ip_ckpt, map_location="cpu")
329
+ self.image_proj_model.load_state_dict(state_dict["image_proj"])
330
+ ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
331
+ ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
332
+
333
+ @torch.inference_mode()
334
+ def get_image_embeds(self, faceid_embeds, face_image, s_scale, shortcut):
335
+ if isinstance(face_image, Image.Image):
336
+ pil_image = [face_image]
337
+ clip_image = self.clip_image_processor(images=face_image, return_tensors="pt").pixel_values
338
+ clip_image = clip_image.to(self.device, dtype=self.torch_dtype)
339
+ clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
340
+ uncond_clip_image_embeds = self.image_encoder(
341
+ torch.zeros_like(clip_image), output_hidden_states=True
342
+ ).hidden_states[-2]
343
+
344
+ faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
345
+ image_prompt_embeds = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale)
346
+ uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale)
347
+ return image_prompt_embeds, uncond_image_prompt_embeds
348
+
349
+ def set_scale(self, scale):
350
+ for attn_processor in self.pipe.unet.attn_processors.values():
351
+ if isinstance(attn_processor, LoRAIPAttnProcessor):
352
+ attn_processor.scale = scale
353
+
354
+ def generate(
355
+ self,
356
+ face_image=None,
357
+ faceid_embeds=None,
358
+ prompt=None,
359
+ negative_prompt=None,
360
+ scale=1.0,
361
+ num_samples=4,
362
+ seed=None,
363
+ guidance_scale=7.5,
364
+ num_inference_steps=30,
365
+ s_scale=1.0,
366
+ shortcut=False,
367
+ **kwargs,
368
+ ):
369
+ self.set_scale(scale)
370
+
371
+
372
+ num_prompts = faceid_embeds.size(0)
373
+
374
+ if prompt is None:
375
+ prompt = "best quality, high quality"
376
+ if negative_prompt is None:
377
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
378
+
379
+ if not isinstance(prompt, List):
380
+ prompt = [prompt] * num_prompts
381
+ if not isinstance(negative_prompt, List):
382
+ negative_prompt = [negative_prompt] * num_prompts
383
+
384
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds, face_image, s_scale, shortcut)
385
+
386
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
387
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
388
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
389
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
390
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
391
+
392
+ with torch.inference_mode():
393
+ prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
394
+ prompt,
395
+ device=self.device,
396
+ num_images_per_prompt=num_samples,
397
+ do_classifier_free_guidance=True,
398
+ negative_prompt=negative_prompt,
399
+ )
400
+ prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
401
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
402
+
403
+ generator = get_generator(seed, self.device)
404
+
405
+ images = self.pipe(
406
+ prompt_embeds=prompt_embeds,
407
+ negative_prompt_embeds=negative_prompt_embeds,
408
+ guidance_scale=guidance_scale,
409
+ num_inference_steps=num_inference_steps,
410
+ generator=generator,
411
+ **kwargs,
412
+ ).images
413
+
414
+ return images
415
+
416
+
417
+ class IPAdapterFaceIDXL(IPAdapterFaceID):
418
+ """SDXL"""
419
+
420
+ def generate(
421
+ self,
422
+ faceid_embeds=None,
423
+ prompt=None,
424
+ negative_prompt=None,
425
+ scale=1.0,
426
+ num_samples=4,
427
+ seed=None,
428
+ num_inference_steps=30,
429
+ **kwargs,
430
+ ):
431
+ self.set_scale(scale)
432
+
433
+ num_prompts = faceid_embeds.size(0)
434
+
435
+ if prompt is None:
436
+ prompt = "best quality, high quality"
437
+ if negative_prompt is None:
438
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
439
+
440
+ if not isinstance(prompt, List):
441
+ prompt = [prompt] * num_prompts
442
+ else:
443
+ faceid_embeds = faceid_embeds.repeat(num_samples, 1, 1)
444
+ num_samples = 1
445
+
446
+ if not isinstance(negative_prompt, List):
447
+ negative_prompt = [negative_prompt] * num_prompts
448
+
449
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds)
450
+
451
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
452
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
453
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
454
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
455
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
456
+
457
+ with torch.inference_mode():
458
+ (
459
+ prompt_embeds,
460
+ negative_prompt_embeds,
461
+ pooled_prompt_embeds,
462
+ negative_pooled_prompt_embeds,
463
+ ) = self.pipe.encode_prompt(
464
+ prompt,
465
+ num_images_per_prompt=num_samples,
466
+ do_classifier_free_guidance=True,
467
+ negative_prompt=negative_prompt,
468
+ )
469
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
470
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
471
+
472
+ generator = get_generator(seed, self.device)
473
+
474
+ images = self.pipe(
475
+ prompt_embeds=prompt_embeds,
476
+ negative_prompt_embeds=negative_prompt_embeds,
477
+ pooled_prompt_embeds=pooled_prompt_embeds,
478
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
479
+ num_inference_steps=num_inference_steps,
480
+ generator=generator,
481
+ num_images_per_prompt=num_samples,
482
+ **kwargs,
483
+ ).images
484
+
485
+ return images
486
+
487
+
488
+ class IPAdapterFaceIDPlusXL(IPAdapterFaceIDPlus):
489
+ """SDXL"""
490
+
491
+ def generate(
492
+ self,
493
+ face_image=None,
494
+ faceid_embeds=None,
495
+ prompt=None,
496
+ negative_prompt=None,
497
+ scale=1.0,
498
+ num_samples=4,
499
+ seed=None,
500
+ guidance_scale=7.5,
501
+ num_inference_steps=30,
502
+ s_scale=1.0,
503
+ shortcut=True,
504
+ **kwargs,
505
+ ):
506
+ self.set_scale(scale)
507
+
508
+ num_prompts = faceid_embeds.size(0)
509
+
510
+ if prompt is None:
511
+ prompt = "best quality, high quality"
512
+ if negative_prompt is None:
513
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
514
+
515
+ if not isinstance(prompt, List):
516
+ prompt = [prompt] * num_prompts
517
+ if not isinstance(negative_prompt, List):
518
+ negative_prompt = [negative_prompt] * num_prompts
519
+
520
+ image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds, face_image, s_scale, shortcut)
521
+
522
+ bs_embed, seq_len, _ = image_prompt_embeds.shape
523
+ image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
524
+ image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
525
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
526
+ uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
527
+
528
+ with torch.inference_mode():
529
+ (
530
+ prompt_embeds,
531
+ negative_prompt_embeds,
532
+ pooled_prompt_embeds,
533
+ negative_pooled_prompt_embeds,
534
+ ) = self.pipe.encode_prompt(
535
+ prompt,
536
+ num_images_per_prompt=num_samples,
537
+ do_classifier_free_guidance=True,
538
+ negative_prompt=negative_prompt,
539
+ )
540
+ prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
541
+ negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
542
+
543
+ generator = get_generator(seed, self.device)
544
+
545
+ images = self.pipe(
546
+ prompt_embeds=prompt_embeds,
547
+ negative_prompt_embeds=negative_prompt_embeds,
548
+ pooled_prompt_embeds=pooled_prompt_embeds,
549
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
550
+ num_inference_steps=num_inference_steps,
551
+ generator=generator,
552
+ guidance_scale=guidance_scale,
553
+ **kwargs,
554
+ ).images
555
+
556
+ return images
ip_adapter/resampler.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
2
+ # and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
3
+
4
+ import math
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ from einops import rearrange
9
+ from einops.layers.torch import Rearrange
10
+
11
+
12
+ # FFN
13
+ def FeedForward(dim, mult=4):
14
+ inner_dim = int(dim * mult)
15
+ return nn.Sequential(
16
+ nn.LayerNorm(dim),
17
+ nn.Linear(dim, inner_dim, bias=False),
18
+ nn.GELU(),
19
+ nn.Linear(inner_dim, dim, bias=False),
20
+ )
21
+
22
+
23
+ def reshape_tensor(x, heads):
24
+ bs, length, width = x.shape
25
+ # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
26
+ x = x.view(bs, length, heads, -1)
27
+ # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
28
+ x = x.transpose(1, 2)
29
+ # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
30
+ x = x.reshape(bs, heads, length, -1)
31
+ return x
32
+
33
+
34
+ class PerceiverAttention(nn.Module):
35
+ def __init__(self, *, dim, dim_head=64, heads=8):
36
+ super().__init__()
37
+ self.scale = dim_head**-0.5
38
+ self.dim_head = dim_head
39
+ self.heads = heads
40
+ inner_dim = dim_head * heads
41
+
42
+ self.norm1 = nn.LayerNorm(dim)
43
+ self.norm2 = nn.LayerNorm(dim)
44
+
45
+ self.to_q = nn.Linear(dim, inner_dim, bias=False)
46
+ self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
47
+ self.to_out = nn.Linear(inner_dim, dim, bias=False)
48
+
49
+ def forward(self, x, latents):
50
+ """
51
+ Args:
52
+ x (torch.Tensor): image features
53
+ shape (b, n1, D)
54
+ latent (torch.Tensor): latent features
55
+ shape (b, n2, D)
56
+ """
57
+ x = self.norm1(x)
58
+ latents = self.norm2(latents)
59
+
60
+ b, l, _ = latents.shape
61
+
62
+ q = self.to_q(latents)
63
+ kv_input = torch.cat((x, latents), dim=-2)
64
+ k, v = self.to_kv(kv_input).chunk(2, dim=-1)
65
+
66
+ q = reshape_tensor(q, self.heads)
67
+ k = reshape_tensor(k, self.heads)
68
+ v = reshape_tensor(v, self.heads)
69
+
70
+ # attention
71
+ scale = 1 / math.sqrt(math.sqrt(self.dim_head))
72
+ weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
73
+ weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
74
+ out = weight @ v
75
+
76
+ out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
77
+
78
+ return self.to_out(out)
79
+
80
+
81
+ class Resampler(nn.Module):
82
+ def __init__(
83
+ self,
84
+ dim=1024,
85
+ depth=8,
86
+ dim_head=64,
87
+ heads=16,
88
+ num_queries=8,
89
+ embedding_dim=768,
90
+ output_dim=1024,
91
+ ff_mult=4,
92
+ max_seq_len: int = 257, # CLIP tokens + CLS token
93
+ apply_pos_emb: bool = False,
94
+ num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
95
+ ):
96
+ super().__init__()
97
+ self.pos_emb = nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None
98
+
99
+ self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
100
+
101
+ self.proj_in = nn.Linear(embedding_dim, dim)
102
+
103
+ self.proj_out = nn.Linear(dim, output_dim)
104
+ self.norm_out = nn.LayerNorm(output_dim)
105
+
106
+ self.to_latents_from_mean_pooled_seq = (
107
+ nn.Sequential(
108
+ nn.LayerNorm(dim),
109
+ nn.Linear(dim, dim * num_latents_mean_pooled),
110
+ Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
111
+ )
112
+ if num_latents_mean_pooled > 0
113
+ else None
114
+ )
115
+
116
+ self.layers = nn.ModuleList([])
117
+ for _ in range(depth):
118
+ self.layers.append(
119
+ nn.ModuleList(
120
+ [
121
+ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
122
+ FeedForward(dim=dim, mult=ff_mult),
123
+ ]
124
+ )
125
+ )
126
+
127
+ def forward(self, x):
128
+ if self.pos_emb is not None:
129
+ n, device = x.shape[1], x.device
130
+ pos_emb = self.pos_emb(torch.arange(n, device=device))
131
+ x = x + pos_emb
132
+
133
+ latents = self.latents.repeat(x.size(0), 1, 1)
134
+
135
+ x = self.proj_in(x)
136
+
137
+ if self.to_latents_from_mean_pooled_seq:
138
+ meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool))
139
+ meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
140
+ latents = torch.cat((meanpooled_latents, latents), dim=-2)
141
+
142
+ for attn, ff in self.layers:
143
+ latents = attn(x, latents) + latents
144
+ latents = ff(latents) + latents
145
+
146
+ latents = self.proj_out(latents)
147
+ return self.norm_out(latents)
148
+
149
+
150
+ def masked_mean(t, *, dim, mask=None):
151
+ if mask is None:
152
+ return t.mean(dim=dim)
153
+
154
+ denom = mask.sum(dim=dim, keepdim=True)
155
+ mask = rearrange(mask, "b n -> b n 1")
156
+ masked_t = t.masked_fill(~mask, 0.0)
157
+
158
+ return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
ip_adapter/sd3_attention_processor.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Callable, List, Optional, Union
2
+
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from torch import nn
6
+ from diffusers.models.attention_processor import Attention
7
+
8
+
9
+ class JointAttnProcessor2_0:
10
+ """Attention processor used typically in processing the SD3-like self-attention projections."""
11
+
12
+ def __init__(self):
13
+ if not hasattr(F, "scaled_dot_product_attention"):
14
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
15
+
16
+ def __call__(
17
+ self,
18
+ attn: Attention,
19
+ hidden_states: torch.FloatTensor,
20
+ encoder_hidden_states: torch.FloatTensor = None,
21
+ attention_mask: Optional[torch.FloatTensor] = None,
22
+ *args,
23
+ **kwargs,
24
+ ) -> torch.FloatTensor:
25
+ residual = hidden_states
26
+
27
+ input_ndim = hidden_states.ndim
28
+ if input_ndim == 4:
29
+ batch_size, channel, height, width = hidden_states.shape
30
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
31
+ context_input_ndim = encoder_hidden_states.ndim
32
+ if context_input_ndim == 4:
33
+ batch_size, channel, height, width = encoder_hidden_states.shape
34
+ encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
35
+
36
+ batch_size = encoder_hidden_states.shape[0]
37
+
38
+ # `sample` projections.
39
+ query = attn.to_q(hidden_states)
40
+ key = attn.to_k(hidden_states)
41
+ value = attn.to_v(hidden_states)
42
+
43
+ # `context` projections.
44
+ encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
45
+ encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
46
+ encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
47
+
48
+ # attention
49
+ query = torch.cat([query, encoder_hidden_states_query_proj], dim=1)
50
+ key = torch.cat([key, encoder_hidden_states_key_proj], dim=1)
51
+ value = torch.cat([value, encoder_hidden_states_value_proj], dim=1)
52
+
53
+ inner_dim = key.shape[-1]
54
+ head_dim = inner_dim // attn.heads
55
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
56
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
57
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
58
+
59
+ hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
60
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
61
+ hidden_states = hidden_states.to(query.dtype)
62
+
63
+ # Split the attention outputs.
64
+ hidden_states, encoder_hidden_states = (
65
+ hidden_states[:, : residual.shape[1]],
66
+ hidden_states[:, residual.shape[1] :],
67
+ )
68
+
69
+ # linear proj
70
+ hidden_states = attn.to_out[0](hidden_states)
71
+ # dropout
72
+ hidden_states = attn.to_out[1](hidden_states)
73
+ if not attn.context_pre_only:
74
+ encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
75
+
76
+ if input_ndim == 4:
77
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
78
+ if context_input_ndim == 4:
79
+ encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
80
+
81
+ return hidden_states, encoder_hidden_states
82
+
83
+
84
+ class IPJointAttnProcessor2_0(torch.nn.Module):
85
+ """Attention processor used typically in processing the SD3-like self-attention projections."""
86
+
87
+ def __init__(self, context_dim, hidden_dim, scale=1.0):
88
+ if not hasattr(F, "scaled_dot_product_attention"):
89
+ raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
90
+ super().__init__()
91
+ self.scale = scale
92
+
93
+ self.add_k_proj_ip = nn.Linear(context_dim, hidden_dim)
94
+ self.add_v_proj_ip = nn.Linear(context_dim, hidden_dim)
95
+
96
+
97
+ def __call__(
98
+ self,
99
+ attn: Attention,
100
+ hidden_states: torch.FloatTensor,
101
+ encoder_hidden_states: torch.FloatTensor = None,
102
+ attention_mask: Optional[torch.FloatTensor] = None,
103
+ ip_hidden_states: torch.FloatTensor = None,
104
+ *args,
105
+ **kwargs,
106
+ ) -> torch.FloatTensor:
107
+ residual = hidden_states
108
+
109
+ input_ndim = hidden_states.ndim
110
+ if input_ndim == 4:
111
+ batch_size, channel, height, width = hidden_states.shape
112
+ hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
113
+ context_input_ndim = encoder_hidden_states.ndim
114
+ if context_input_ndim == 4:
115
+ batch_size, channel, height, width = encoder_hidden_states.shape
116
+ encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
117
+
118
+ batch_size = encoder_hidden_states.shape[0]
119
+
120
+ # `sample` projections.
121
+ query = attn.to_q(hidden_states)
122
+ key = attn.to_k(hidden_states)
123
+ value = attn.to_v(hidden_states)
124
+
125
+ sample_query = query # latent query
126
+
127
+ # `context` projections.
128
+ encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
129
+ encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
130
+ encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
131
+
132
+ # attention
133
+ query = torch.cat([query, encoder_hidden_states_query_proj], dim=1)
134
+ key = torch.cat([key, encoder_hidden_states_key_proj], dim=1)
135
+ value = torch.cat([value, encoder_hidden_states_value_proj], dim=1)
136
+
137
+ inner_dim = key.shape[-1]
138
+ head_dim = inner_dim // attn.heads
139
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
140
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
141
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
142
+
143
+ hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
144
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
145
+ hidden_states = hidden_states.to(query.dtype)
146
+
147
+ # Split the attention outputs.
148
+ hidden_states, encoder_hidden_states = (
149
+ hidden_states[:, : residual.shape[1]],
150
+ hidden_states[:, residual.shape[1] :],
151
+ )
152
+
153
+ # for ip-adapter
154
+ ip_key = self.add_k_proj_ip(ip_hidden_states)
155
+ ip_value = self.add_v_proj_ip(ip_hidden_states)
156
+ ip_query = sample_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
157
+ ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
158
+ ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
159
+
160
+ ip_hidden_states = F.scaled_dot_product_attention(ip_query, ip_key, ip_value, dropout_p=0.0, is_causal=False)
161
+ ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
162
+ ip_hidden_states = ip_hidden_states.to(ip_query.dtype)
163
+
164
+ hidden_states = hidden_states + self.scale * ip_hidden_states
165
+
166
+ # linear proj
167
+ hidden_states = attn.to_out[0](hidden_states)
168
+ # dropout
169
+ hidden_states = attn.to_out[1](hidden_states)
170
+ if not attn.context_pre_only:
171
+ encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
172
+
173
+ if input_ndim == 4:
174
+ hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
175
+ if context_input_ndim == 4:
176
+ encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
177
+
178
+ return hidden_states, encoder_hidden_states
179
+
ip_adapter/test_resampler.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from resampler import Resampler
3
+ from transformers import CLIPVisionModel
4
+
5
+ BATCH_SIZE = 2
6
+ OUTPUT_DIM = 1280
7
+ NUM_QUERIES = 8
8
+ NUM_LATENTS_MEAN_POOLED = 4 # 0 for no mean pooling (previous behavior)
9
+ APPLY_POS_EMB = True # False for no positional embeddings (previous behavior)
10
+ IMAGE_ENCODER_NAME_OR_PATH = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
11
+
12
+
13
+ def main():
14
+ image_encoder = CLIPVisionModel.from_pretrained(IMAGE_ENCODER_NAME_OR_PATH)
15
+ embedding_dim = image_encoder.config.hidden_size
16
+ print(f"image_encoder hidden size: ", embedding_dim)
17
+
18
+ image_proj_model = Resampler(
19
+ dim=1024,
20
+ depth=2,
21
+ dim_head=64,
22
+ heads=16,
23
+ num_queries=NUM_QUERIES,
24
+ embedding_dim=embedding_dim,
25
+ output_dim=OUTPUT_DIM,
26
+ ff_mult=2,
27
+ max_seq_len=257,
28
+ apply_pos_emb=APPLY_POS_EMB,
29
+ num_latents_mean_pooled=NUM_LATENTS_MEAN_POOLED,
30
+ )
31
+
32
+ dummy_images = torch.randn(BATCH_SIZE, 3, 224, 224)
33
+ with torch.no_grad():
34
+ image_embeds = image_encoder(dummy_images, output_hidden_states=True).hidden_states[-2]
35
+ print("image_embds shape: ", image_embeds.shape)
36
+
37
+ with torch.no_grad():
38
+ ip_tokens = image_proj_model(image_embeds)
39
+ print("ip_tokens shape:", ip_tokens.shape)
40
+ assert ip_tokens.shape == (BATCH_SIZE, NUM_QUERIES + NUM_LATENTS_MEAN_POOLED, OUTPUT_DIM)
41
+
42
+
43
+ if __name__ == "__main__":
44
+ main()
ip_adapter/utils.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import numpy as np
4
+ from PIL import Image
5
+
6
+ attn_maps = {}
7
+ def hook_fn(name):
8
+ def forward_hook(module, input, output):
9
+ if hasattr(module.processor, "attn_map"):
10
+ attn_maps[name] = module.processor.attn_map
11
+ del module.processor.attn_map
12
+
13
+ return forward_hook
14
+
15
+ def register_cross_attention_hook(unet):
16
+ for name, module in unet.named_modules():
17
+ if name.split('.')[-1].startswith('attn2'):
18
+ module.register_forward_hook(hook_fn(name))
19
+
20
+ return unet
21
+
22
+ def upscale(attn_map, target_size):
23
+ attn_map = torch.mean(attn_map, dim=0)
24
+ attn_map = attn_map.permute(1,0)
25
+ temp_size = None
26
+
27
+ for i in range(0,5):
28
+ scale = 2 ** i
29
+ if ( target_size[0] // scale ) * ( target_size[1] // scale) == attn_map.shape[1]*64:
30
+ temp_size = (target_size[0]//(scale*8), target_size[1]//(scale*8))
31
+ break
32
+
33
+ assert temp_size is not None, "temp_size cannot is None"
34
+
35
+ attn_map = attn_map.view(attn_map.shape[0], *temp_size)
36
+
37
+ attn_map = F.interpolate(
38
+ attn_map.unsqueeze(0).to(dtype=torch.float32),
39
+ size=target_size,
40
+ mode='bilinear',
41
+ align_corners=False
42
+ )[0]
43
+
44
+ attn_map = torch.softmax(attn_map, dim=0)
45
+ return attn_map
46
+ def get_net_attn_map(image_size, batch_size=2, instance_or_negative=False, detach=True):
47
+
48
+ idx = 0 if instance_or_negative else 1
49
+ net_attn_maps = []
50
+
51
+ for name, attn_map in attn_maps.items():
52
+ attn_map = attn_map.cpu() if detach else attn_map
53
+ attn_map = torch.chunk(attn_map, batch_size)[idx].squeeze()
54
+ attn_map = upscale(attn_map, image_size)
55
+ net_attn_maps.append(attn_map)
56
+
57
+ net_attn_maps = torch.mean(torch.stack(net_attn_maps,dim=0),dim=0)
58
+
59
+ return net_attn_maps
60
+
61
+ def attnmaps2images(net_attn_maps):
62
+
63
+ #total_attn_scores = 0
64
+ images = []
65
+
66
+ for attn_map in net_attn_maps:
67
+ attn_map = attn_map.cpu().numpy()
68
+ #total_attn_scores += attn_map.mean().item()
69
+
70
+ normalized_attn_map = (attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255
71
+ normalized_attn_map = normalized_attn_map.astype(np.uint8)
72
+ #print("norm: ", normalized_attn_map.shape)
73
+ image = Image.fromarray(normalized_attn_map)
74
+
75
+ #image = fix_save_attn_map(attn_map)
76
+ images.append(image)
77
+
78
+ #print(total_attn_scores)
79
+ return images
80
+ def is_torch2_available():
81
+ return hasattr(F, "scaled_dot_product_attention")
82
+
83
+ def get_generator(seed, device):
84
+
85
+ if seed is not None:
86
+ if isinstance(seed, list):
87
+ generator = [torch.Generator(device).manual_seed(seed_item) for seed_item in seed]
88
+ else:
89
+ generator = torch.Generator(device).manual_seed(seed)
90
+ else:
91
+ generator = None
92
+
93
+ return generator
model/__init__.py ADDED
File without changes
model/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (187 Bytes). View file
 
model/__pycache__/dit.cpython-312.pyc ADDED
Binary file (19 kB). View file
 
model/__pycache__/pipeline_pit.cpython-312.pyc ADDED
Binary file (4.85 kB). View file
 
model/dit.py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # From the great https://github.com/cloneofsimo/minRF/blob/main/dit.py
2
+ # Code heavily based on https://github.com/Alpha-VLLM/LLaMA2-Accessory
3
+ # this is modeling code for DiT-LLaMA model
4
+
5
+ import math
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+ from diffusers import ModelMixin, ConfigMixin
11
+ from diffusers.configuration_utils import register_to_config
12
+
13
+
14
+ def modulate(x, shift, scale):
15
+ return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
16
+
17
+
18
+ class TimestepEmbedder(nn.Module):
19
+ def __init__(self, hidden_size, frequency_embedding_size=256):
20
+ super().__init__()
21
+ self.mlp = nn.Sequential(
22
+ nn.Linear(frequency_embedding_size, hidden_size),
23
+ nn.SiLU(),
24
+ nn.Linear(hidden_size, hidden_size),
25
+ )
26
+ self.frequency_embedding_size = frequency_embedding_size
27
+
28
+ @staticmethod
29
+ def timestep_embedding(t, dim, max_period=10000):
30
+ half = dim // 2
31
+ freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half) / half).to(t.device)
32
+ args = t[:, None] * freqs[None]
33
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
34
+ if dim % 2:
35
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
36
+ return embedding
37
+
38
+ def forward(self, t):
39
+ t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype=next(self.parameters()).dtype)
40
+ t_emb = self.mlp(t_freq)
41
+ return t_emb
42
+
43
+
44
+ class LabelEmbedder(nn.Module):
45
+ def __init__(self, num_classes, hidden_size, dropout_prob):
46
+ super().__init__()
47
+ use_cfg_embedding = int(dropout_prob > 0)
48
+ self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
49
+ self.num_classes = num_classes
50
+ self.dropout_prob = dropout_prob
51
+
52
+ def token_drop(self, labels, force_drop_ids=None):
53
+ if force_drop_ids is None:
54
+ drop_ids = torch.rand(labels.shape[0]) < self.dropout_prob
55
+ drop_ids = drop_ids.cuda()
56
+ drop_ids = drop_ids.to(labels.device)
57
+ else:
58
+ drop_ids = force_drop_ids == 1
59
+ labels = torch.where(drop_ids, self.num_classes, labels)
60
+ return labels
61
+
62
+ def forward(self, labels, train, force_drop_ids=None):
63
+ use_dropout = self.dropout_prob > 0
64
+ if (train and use_dropout) or (force_drop_ids is not None):
65
+ labels = self.token_drop(labels, force_drop_ids)
66
+ embeddings = self.embedding_table(labels)
67
+ return embeddings
68
+
69
+
70
+ class Attention(nn.Module):
71
+ def __init__(self, dim, n_heads):
72
+ super().__init__()
73
+
74
+ self.n_heads = n_heads
75
+ self.n_rep = 1
76
+ self.head_dim = dim // n_heads
77
+
78
+ self.wq = nn.Linear(dim, n_heads * self.head_dim, bias=False)
79
+ self.wk = nn.Linear(dim, self.n_heads * self.head_dim, bias=False)
80
+ self.wv = nn.Linear(dim, self.n_heads * self.head_dim, bias=False)
81
+ self.wo = nn.Linear(n_heads * self.head_dim, dim, bias=False)
82
+
83
+ self.q_norm = nn.LayerNorm(self.n_heads * self.head_dim)
84
+ self.k_norm = nn.LayerNorm(self.n_heads * self.head_dim)
85
+
86
+ @staticmethod
87
+ def reshape_for_broadcast(freqs_cis, x):
88
+ ndim = x.ndim
89
+ assert 0 <= 1 < ndim
90
+ # assert freqs_cis.shape == (x.shape[1], x.shape[-1])
91
+ _freqs_cis = freqs_cis[: x.shape[1]]
92
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
93
+ return _freqs_cis.view(*shape)
94
+
95
+ @staticmethod
96
+ def apply_rotary_emb(xq, xk, freqs_cis):
97
+ xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
98
+ xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
99
+ freqs_cis_xq = Attention.reshape_for_broadcast(freqs_cis, xq_)
100
+ freqs_cis_xk = Attention.reshape_for_broadcast(freqs_cis, xk_)
101
+
102
+ xq_out = torch.view_as_real(xq_ * freqs_cis_xq).flatten(3)
103
+ xk_out = torch.view_as_real(xk_ * freqs_cis_xk).flatten(3)
104
+ return xq_out, xk_out
105
+
106
+ def forward(self, x, freqs_cis):
107
+ bsz, seqlen, _ = x.shape
108
+
109
+ xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
110
+
111
+ dtype = xq.dtype
112
+
113
+ xq = self.q_norm(xq)
114
+ xk = self.k_norm(xk)
115
+
116
+ xq = xq.view(bsz, seqlen, self.n_heads, self.head_dim)
117
+ xk = xk.view(bsz, seqlen, self.n_heads, self.head_dim)
118
+ xv = xv.view(bsz, seqlen, self.n_heads, self.head_dim)
119
+
120
+ xq, xk = self.apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
121
+ xq, xk = xq.to(dtype), xk.to(dtype)
122
+
123
+ output = F.scaled_dot_product_attention(
124
+ xq.permute(0, 2, 1, 3),
125
+ xk.permute(0, 2, 1, 3),
126
+ xv.permute(0, 2, 1, 3),
127
+ dropout_p=0.0,
128
+ is_causal=False,
129
+ ).permute(0, 2, 1, 3)
130
+ output = output.flatten(-2)
131
+
132
+ return self.wo(output)
133
+
134
+
135
+ class FeedForward(nn.Module):
136
+ def __init__(self, dim, hidden_dim, multiple_of, ffn_dim_multiplier=None):
137
+ super().__init__()
138
+ hidden_dim = int(2 * hidden_dim / 3)
139
+ if ffn_dim_multiplier:
140
+ hidden_dim = int(ffn_dim_multiplier * hidden_dim)
141
+ hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
142
+
143
+ self.w1 = nn.Linear(dim, hidden_dim, bias=False)
144
+ self.w2 = nn.Linear(hidden_dim, dim, bias=False)
145
+ self.w3 = nn.Linear(dim, hidden_dim, bias=False)
146
+
147
+ def _forward_silu_gating(self, x1, x3):
148
+ return F.silu(x1) * x3
149
+
150
+ def forward(self, x):
151
+ return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
152
+
153
+
154
+ class TransformerBlock(nn.Module):
155
+ def __init__(
156
+ self,
157
+ layer_id,
158
+ dim,
159
+ n_heads,
160
+ multiple_of,
161
+ ffn_dim_multiplier,
162
+ norm_eps,
163
+ ):
164
+ super().__init__()
165
+ self.dim = dim
166
+ self.head_dim = dim // n_heads
167
+ self.attention = Attention(dim, n_heads)
168
+ self.feed_forward = FeedForward(
169
+ dim=dim,
170
+ hidden_dim=4 * dim,
171
+ multiple_of=multiple_of,
172
+ ffn_dim_multiplier=ffn_dim_multiplier,
173
+ )
174
+ self.layer_id = layer_id
175
+ self.attention_norm = nn.LayerNorm(dim, eps=norm_eps)
176
+ self.ffn_norm = nn.LayerNorm(dim, eps=norm_eps)
177
+
178
+ self.adaLN_modulation = nn.Sequential(
179
+ nn.SiLU(),
180
+ nn.Linear(min(dim, 1024), 6 * dim, bias=True),
181
+ )
182
+
183
+ def forward(self, x, freqs_cis, adaln_input=None):
184
+ if adaln_input is not None:
185
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(
186
+ 6, dim=1
187
+ )
188
+
189
+ x = x + gate_msa.unsqueeze(1) * self.attention(
190
+ modulate(self.attention_norm(x), shift_msa, scale_msa), freqs_cis
191
+ )
192
+ x = x + gate_mlp.unsqueeze(1) * self.feed_forward(modulate(self.ffn_norm(x), shift_mlp, scale_mlp))
193
+ else:
194
+ x = x + self.attention(self.attention_norm(x), freqs_cis)
195
+ x = x + self.feed_forward(self.ffn_norm(x))
196
+
197
+ return x
198
+
199
+
200
+ class FinalLayer(nn.Module):
201
+ def __init__(self, hidden_size, out_channels):
202
+ super().__init__()
203
+ self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
204
+ self.linear = nn.Linear(hidden_size, out_channels, bias=True)
205
+ self.adaLN_modulation = nn.Sequential(
206
+ nn.SiLU(),
207
+ nn.Linear(min(hidden_size, 1024), 2 * hidden_size, bias=True),
208
+ )
209
+ # # init zero
210
+ nn.init.constant_(self.linear.weight, 0)
211
+ nn.init.constant_(self.linear.bias, 0)
212
+
213
+ def forward(self, x, c):
214
+ shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
215
+ x = modulate(self.norm_final(x), shift, scale)
216
+ x = self.linear(x)
217
+ return x
218
+
219
+
220
+ class DiT_Llama(ModelMixin, ConfigMixin):
221
+
222
+ @register_to_config
223
+ def __init__(
224
+ self,
225
+ embedding_dim=3,
226
+ hidden_dim=512,
227
+ n_layers=5,
228
+ n_heads=16,
229
+ multiple_of=256,
230
+ ffn_dim_multiplier=None,
231
+ norm_eps=1e-5,
232
+ ):
233
+ super().__init__()
234
+
235
+ self.in_channels = embedding_dim
236
+ self.out_channels = embedding_dim
237
+
238
+ self.x_embedder = nn.Linear(embedding_dim, hidden_dim, bias=True)
239
+ nn.init.constant_(self.x_embedder.bias, 0)
240
+
241
+ self.t_embedder = TimestepEmbedder(min(hidden_dim, 1024))
242
+ # self.y_embedder = LabelEmbedder(num_classes, min(dim, 1024), class_dropout_prob)
243
+
244
+ self.layers = nn.ModuleList(
245
+ [
246
+ TransformerBlock(
247
+ layer_id,
248
+ hidden_dim,
249
+ n_heads,
250
+ multiple_of,
251
+ ffn_dim_multiplier,
252
+ norm_eps,
253
+ )
254
+ for layer_id in range(n_layers)
255
+ ]
256
+ )
257
+ self.final_layer = FinalLayer(hidden_dim, self.out_channels)
258
+
259
+ self.freqs_cis = DiT_Llama.precompute_freqs_cis(hidden_dim // n_heads, 4096)
260
+
261
+ def forward(self, x, t, cond):
262
+ self.freqs_cis = self.freqs_cis.to(x.device)
263
+
264
+ x = torch.cat([x, cond], dim=1)
265
+
266
+ x = self.x_embedder(x)
267
+
268
+ t = self.t_embedder(t) # (N, D)
269
+ adaln_input = t.to(x.dtype)
270
+
271
+ for layer in self.layers:
272
+ x = layer(x, self.freqs_cis[: x.size(1)], adaln_input=adaln_input)
273
+
274
+ x = self.final_layer(x, adaln_input)
275
+ # Drop the cond part
276
+ x = x[:, : -cond.size(1)]
277
+ return x
278
+
279
+ def forward_with_cfg(self, x, t, cond, cfg_scale):
280
+ half = x[: len(x) // 2]
281
+ combined = torch.cat([half, half], dim=0)
282
+ model_out = self.forward(combined, t, cond)
283
+ eps, rest = model_out[:, : self.in_channels], model_out[:, self.in_channels :]
284
+ cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
285
+ half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
286
+ eps = torch.cat([half_eps, half_eps], dim=0)
287
+ return torch.cat([eps, rest], dim=1)
288
+
289
+ @staticmethod
290
+ def precompute_freqs_cis(dim, end, theta=10000.0):
291
+ freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
292
+ t = torch.arange(end)
293
+ freqs = torch.outer(t, freqs).float()
294
+ freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
295
+ return freqs_cis
296
+
297
+
298
+ def DiT_base(**kwargs):
299
+ return DiT_Llama(in_dim=2048, hidden_dim=2048, n_layers=8, n_heads=32, **kwargs)
300
+
301
+
302
+ if __name__ == "__main__":
303
+ model = DiT_Llama_600M_patch2()
304
+ model.eval()
305
+ x = torch.randn(2, 3, 32, 32)
306
+ t = torch.randint(0, 100, (2,))
307
+ y = torch.randint(0, 10, (2,))
308
+
309
+ with torch.no_grad():
310
+ out = model(x, t, y)
311
+ print(out.shape)
312
+ out = model.forward_with_cfg(x, t, y, 0.5)
313
+ print(out.shape)
model/pipeline_pit.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import List, Optional, Union
3
+
4
+ import torch
5
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
6
+ from diffusers.utils import BaseOutput
7
+ from diffusers.utils import (
8
+ logging,
9
+ )
10
+ from diffusers.utils.torch_utils import randn_tensor
11
+ from dataclasses import dataclass
12
+ from model.dit import DiT_Llama
13
+
14
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
15
+
16
+
17
+ @dataclass
18
+ class PiTPipelineOutput(BaseOutput):
19
+ image_embeds: torch.Tensor
20
+
21
+
22
+ class PiTPipeline(DiffusionPipeline):
23
+
24
+ def __init__(self, prior: DiT_Llama):
25
+ super().__init__()
26
+
27
+ self.register_modules(
28
+ prior=prior,
29
+ )
30
+
31
+ def prepare_latents(self, shape, dtype, device, generator, latents):
32
+ if latents is None:
33
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
34
+ else:
35
+ if latents.shape != shape:
36
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
37
+ latents = latents.to(device)
38
+
39
+ return latents
40
+
41
+ @torch.no_grad()
42
+ def __call__(
43
+ self,
44
+ cond_sequence: torch.FloatTensor,
45
+ negative_cond_sequence: torch.FloatTensor,
46
+ num_images_per_prompt: int = 1,
47
+ num_inference_steps: int = 25,
48
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
49
+ latents: Optional[torch.FloatTensor] = None,
50
+ init_latents: Optional[torch.FloatTensor] = None,
51
+ strength: Optional[float] = None,
52
+ guidance_scale: float = 1.0,
53
+ output_type: Optional[str] = "pt", # pt only
54
+ return_dict: bool = True,
55
+ ):
56
+
57
+ do_classifier_free_guidance = guidance_scale > 1.0
58
+
59
+ device = self._execution_device
60
+
61
+ batch_size = cond_sequence.shape[0]
62
+ batch_size = batch_size * num_images_per_prompt
63
+
64
+ embedding_dim = self.prior.config.embedding_dim
65
+
66
+ latents = self.prepare_latents(
67
+ (batch_size, 16, embedding_dim),
68
+ self.prior.dtype,
69
+ device,
70
+ generator,
71
+ latents,
72
+ )
73
+
74
+ if init_latents is not None:
75
+ init_latents = init_latents.to(latents.device)
76
+ latents = (strength) * latents + (1 - strength) * init_latents
77
+
78
+ # Rectified Flow
79
+ dt = 1.0 / num_inference_steps
80
+ dt = torch.tensor([dt] * batch_size).to(latents.device).view([batch_size, *([1] * len(latents.shape[1:]))])
81
+ start_inference_step = (
82
+ math.ceil(num_inference_steps * (strength)) if strength is not None else num_inference_steps
83
+ )
84
+ for i in range(start_inference_step, 0, -1):
85
+ t = i / num_inference_steps
86
+ t = torch.tensor([t] * batch_size).to(latents.device)
87
+
88
+ vc = self.prior(latents, t, cond_sequence)
89
+ if do_classifier_free_guidance:
90
+ vu = self.prior(latents, t, negative_cond_sequence)
91
+ vc = vu + guidance_scale * (vc - vu)
92
+
93
+ latents = latents - dt * vc
94
+
95
+ image_embeddings = latents
96
+
97
+ if output_type not in ["pt", "np"]:
98
+ raise ValueError(f"Only the output types `pt` and `np` are supported not output_type={output_type}")
99
+
100
+ if output_type == "np":
101
+ image_embeddings = image_embeddings.cpu().numpy()
102
+
103
+ if not return_dict:
104
+ return image_embeddings
105
+
106
+ return PiTPipelineOutput(image_embeds=image_embeddings)
pit.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ from pathlib import Path
3
+ from typing import Optional
4
+
5
+ import numpy as np
6
+ import pyrallis
7
+ import torch
8
+ from diffusers import (
9
+ StableDiffusionXLPipeline,
10
+ )
11
+ from huggingface_hub import hf_hub_download
12
+ from PIL import Image
13
+
14
+ from ip_adapter import IPAdapterPlusXL
15
+ from model.dit import DiT_Llama
16
+ from model.pipeline_pit import PiTPipeline
17
+ from training.train_config import TrainConfig
18
+
19
+
20
+ def paste_on_background(image, background, min_scale=0.4, max_scale=0.8, scale=None):
21
+ # Calculate aspect ratio and determine resizing based on the smaller dimension of the background
22
+ aspect_ratio = image.width / image.height
23
+ scale = random.uniform(min_scale, max_scale) if scale is None else scale
24
+ new_width = int(min(background.width, background.height * aspect_ratio) * scale)
25
+ new_height = int(new_width / aspect_ratio)
26
+
27
+ # Resize image and calculate position
28
+ image = image.resize((new_width, new_height), resample=Image.LANCZOS)
29
+ pos_x = random.randint(0, background.width - new_width)
30
+ pos_y = random.randint(0, background.height - new_height)
31
+
32
+ # Paste the image using its alpha channel as mask if present
33
+ background.paste(image, (pos_x, pos_y), image if "A" in image.mode else None)
34
+ return background
35
+
36
+
37
+ def set_seed(seed: int):
38
+ """Ensures reproducibility across multiple libraries."""
39
+ random.seed(seed) # Python random module
40
+ np.random.seed(seed) # NumPy random module
41
+ torch.manual_seed(seed) # PyTorch CPU random seed
42
+ torch.cuda.manual_seed_all(seed) # PyTorch GPU random seed
43
+ torch.backends.cudnn.deterministic = True # Ensures deterministic behavior
44
+ torch.backends.cudnn.benchmark = False # Disable benchmarking to avoid randomness
45
+
46
+
47
+ class PiTDemoPipeline:
48
+ def __init__(self, prior_repo: str, prior_path: str):
49
+ # Download model and config
50
+ prior_ckpt_path = hf_hub_download(
51
+ repo_id=prior_repo,
52
+ filename=str(prior_path),
53
+ local_dir="pretrained_models",
54
+ )
55
+ prior_cfg_path = hf_hub_download(
56
+ repo_id=prior_repo, filename=str(Path(prior_path).parent / "cfg.yaml"), local_dir="pretrained_models"
57
+ )
58
+ self.model_cfg: TrainConfig = pyrallis.load(TrainConfig, open(prior_cfg_path, "r"))
59
+
60
+ self.weight_dtype = torch.float32
61
+ self.device = "cuda:0"
62
+ prior = DiT_Llama(
63
+ embedding_dim=2048,
64
+ hidden_dim=self.model_cfg.hidden_dim,
65
+ n_layers=self.model_cfg.num_layers,
66
+ n_heads=self.model_cfg.num_attention_heads,
67
+ )
68
+ prior.load_state_dict(torch.load(prior_ckpt_path))
69
+ image_pipe = StableDiffusionXLPipeline.from_pretrained(
70
+ "stabilityai/stable-diffusion-xl-base-1.0",
71
+ torch_dtype=torch.float16,
72
+ add_watermarker=False,
73
+ )
74
+ ip_ckpt_path = hf_hub_download(
75
+ repo_id="h94/IP-Adapter",
76
+ filename="ip-adapter-plus_sdxl_vit-h.bin",
77
+ subfolder="sdxl_models",
78
+ local_dir="pretrained_models",
79
+ )
80
+
81
+ self.ip_model = IPAdapterPlusXL(
82
+ image_pipe,
83
+ "models/image_encoder",
84
+ ip_ckpt_path,
85
+ self.device,
86
+ num_tokens=16,
87
+ )
88
+ self.image_processor = self.ip_model.clip_image_processor
89
+
90
+ empty_image = Image.new("RGB", (256, 256), (255, 255, 255))
91
+ zero_image = torch.Tensor(self.image_processor(empty_image)["pixel_values"][0])
92
+ self.zero_image_embeds = self.ip_model.get_image_embeds(zero_image.unsqueeze(0), skip_uncond=True)
93
+
94
+ prior_pipeline = PiTPipeline(
95
+ prior=prior,
96
+ )
97
+ self.prior_pipeline = prior_pipeline.to(self.device)
98
+ set_seed(42)
99
+
100
+ def run(self, crops_paths: list[str], scale: float = 2.0, seed: Optional[int] = None, n_images: int = 1):
101
+ if seed is not None:
102
+ set_seed(seed)
103
+ processed_crops = []
104
+ input_images = []
105
+
106
+ crops_paths = [None] + crops_paths
107
+ # Extend to >3 with Nones
108
+ while len(crops_paths) < 3:
109
+ crops_paths.append(None)
110
+
111
+ for path_ind, path in enumerate(crops_paths):
112
+ if path is None:
113
+ image = Image.new("RGB", (224, 224), (255, 255, 255))
114
+ else:
115
+ image = Image.open(path).convert("RGB")
116
+ if path_ind > 0 or not self.model_cfg.use_ref:
117
+ background = Image.new("RGB", (1024, 1024), (255, 255, 255))
118
+ image = paste_on_background(image, background, scale=0.92)
119
+ else:
120
+ image = image.resize((1024, 1024))
121
+ input_images.append(image)
122
+ # Name should be parent directory name
123
+ processed_image = (
124
+ torch.Tensor(self.image_processor(image)["pixel_values"][0])
125
+ .to(self.device)
126
+ .unsqueeze(0)
127
+ .to(self.weight_dtype)
128
+ )
129
+ processed_crops.append(processed_image)
130
+
131
+ image_embed_inputs = []
132
+ for crop_ind in range(len(processed_crops)):
133
+ image_embed_inputs.append(self.ip_model.get_image_embeds(processed_crops[crop_ind], skip_uncond=True))
134
+ crops_input_sequence = torch.cat(image_embed_inputs, dim=1)
135
+ generated_images = []
136
+ for _ in range(n_images):
137
+ seed = random.randint(0, 1000000)
138
+ for curr_scale in [scale]:
139
+ negative_cond_sequence = torch.zeros_like(crops_input_sequence)
140
+ embeds_len = self.zero_image_embeds.shape[1]
141
+ for i in range(0, negative_cond_sequence.shape[1], embeds_len):
142
+ negative_cond_sequence[:, i : i + embeds_len] = self.zero_image_embeds.detach()
143
+
144
+ img_emb = self.prior_pipeline(
145
+ cond_sequence=crops_input_sequence,
146
+ negative_cond_sequence=negative_cond_sequence,
147
+ num_inference_steps=25,
148
+ num_images_per_prompt=1,
149
+ guidance_scale=curr_scale,
150
+ generator=torch.Generator(device="cuda").manual_seed(seed),
151
+ ).image_embeds
152
+
153
+ for seed_2 in range(1):
154
+ images = self.ip_model.generate(
155
+ image_prompt_embeds=img_emb,
156
+ num_samples=1,
157
+ num_inference_steps=50,
158
+ )
159
+ generated_images += images
160
+
161
+ return generated_images
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ accelerate
2
+ diffusers
3
+ einops
4
+ pyrallis
5
+ torch
6
+ transformers
training/__init__.py ADDED
File without changes
training/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (190 Bytes). View file
 
training/__pycache__/train_config.cpython-312.pyc ADDED
Binary file (2.31 kB). View file
 
training/coach.py ADDED
@@ -0,0 +1,409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import sys
3
+ from pathlib import Path
4
+
5
+ import diffusers
6
+ import pyrallis
7
+ import torch
8
+ import torch.utils.checkpoint
9
+ import transformers
10
+ from PIL import Image
11
+ from accelerate import Accelerator
12
+ from accelerate.logging import get_logger
13
+ from accelerate.utils import ProjectConfiguration, set_seed
14
+ from diffusers import StableDiffusionXLPipeline
15
+ from huggingface_hub import hf_hub_download
16
+ from torchvision import transforms
17
+ from tqdm import tqdm
18
+
19
+ from ip_adapter import IPAdapterPlusXL
20
+ from model.dit import DiT_Llama
21
+ from model.pipeline_pit import PiTPipeline
22
+ from training.dataset import (
23
+ PartsDataset,
24
+ )
25
+ from training.train_config import TrainConfig
26
+ from utils import vis_utils
27
+
28
+ logger = get_logger(__name__, log_level="INFO")
29
+
30
+
31
+ class Coach:
32
+ def __init__(self, config: TrainConfig):
33
+ self.cfg = config
34
+ self.cfg.output_dir.mkdir(exist_ok=True, parents=True)
35
+ (self.cfg.output_dir / "cfg.yaml").write_text(pyrallis.dump(self.cfg))
36
+ (self.cfg.output_dir / "run.sh").write_text(f'python {Path(__file__).name} {" ".join(sys.argv)}')
37
+
38
+ self.logging_dir = self.cfg.output_dir / "logs"
39
+ accelerator_project_config = ProjectConfiguration(
40
+ total_limit=2, project_dir=self.cfg.output_dir, logging_dir=self.logging_dir
41
+ )
42
+ self.accelerator = Accelerator(
43
+ gradient_accumulation_steps=self.cfg.gradient_accumulation_steps,
44
+ mixed_precision=self.cfg.mixed_precision,
45
+ log_with=self.cfg.report_to,
46
+ project_config=accelerator_project_config,
47
+ )
48
+
49
+ self.device = "cuda"
50
+
51
+ logger.info(self.accelerator.state, main_process_only=False)
52
+ if self.accelerator.is_local_main_process:
53
+ transformers.utils.logging.set_verbosity_warning()
54
+ diffusers.utils.logging.set_verbosity_info()
55
+ else:
56
+ transformers.utils.logging.set_verbosity_error()
57
+ diffusers.utils.logging.set_verbosity_error()
58
+
59
+ if self.cfg.seed is not None:
60
+ set_seed(self.cfg.seed)
61
+
62
+ if self.accelerator.is_main_process:
63
+ self.logging_dir.mkdir(exist_ok=True, parents=True)
64
+
65
+ self.weight_dtype = torch.float32
66
+ if self.accelerator.mixed_precision == "fp16":
67
+ self.weight_dtype = torch.float16
68
+ elif self.accelerator.mixed_precision == "bf16":
69
+ self.weight_dtype = torch.bfloat16
70
+
71
+ self.prior = DiT_Llama(
72
+ embedding_dim=2048,
73
+ hidden_dim=self.cfg.hidden_dim,
74
+ n_layers=self.cfg.num_layers,
75
+ n_heads=self.cfg.num_attention_heads,
76
+ )
77
+ # pretty print total number of parameters in Billions
78
+ num_params = sum(p.numel() for p in self.prior.parameters())
79
+ print(f"Number of parameters: {num_params / 1e9:.2f}B")
80
+
81
+ self.image_pipe = StableDiffusionXLPipeline.from_pretrained(
82
+ "stabilityai/stable-diffusion-xl-base-1.0",
83
+ torch_dtype=torch.float16,
84
+ add_watermarker=False,
85
+ ).to(self.device)
86
+
87
+ ip_ckpt_path = hf_hub_download(
88
+ repo_id="h94/IP-Adapter",
89
+ filename="ip-adapter-plus_sdxl_vit-h.bin",
90
+ subfolder="sdxl_models",
91
+ local_dir="pretrained_models",
92
+ )
93
+
94
+ self.ip_model = IPAdapterPlusXL(
95
+ self.image_pipe,
96
+ "models/image_encoder",
97
+ ip_ckpt_path,
98
+ self.device,
99
+ num_tokens=16,
100
+ )
101
+
102
+ self.image_processor = self.ip_model.clip_image_processor
103
+
104
+ empty_image = Image.new("RGB", (256, 256), (255, 255, 255))
105
+ zero_image = torch.Tensor(self.image_processor(empty_image)["pixel_values"][0])
106
+ self.zero_image_embeds = self.ip_model.get_image_embeds(zero_image.unsqueeze(0), skip_uncond=True)
107
+
108
+ self.prior_pipeline = PiTPipeline(prior=self.prior)
109
+ self.prior_pipeline = self.prior_pipeline.to(self.accelerator.device)
110
+
111
+ params_to_optimize = list(self.prior.parameters())
112
+
113
+ self.optimizer = torch.optim.AdamW(
114
+ params_to_optimize,
115
+ lr=self.cfg.lr,
116
+ betas=(self.cfg.adam_beta1, self.cfg.adam_beta2),
117
+ weight_decay=self.cfg.adam_weight_decay,
118
+ eps=self.cfg.adam_epsilon,
119
+ )
120
+
121
+ self.train_dataloader, self.validation_dataloader = self.get_dataloaders()
122
+
123
+ self.prior, self.optimizer, self.train_dataloader = self.accelerator.prepare(
124
+ self.prior, self.optimizer, self.train_dataloader
125
+ )
126
+
127
+ self.train_step = 0 if self.cfg.resume_from_step is None else self.cfg.resume_from_step
128
+ print(self.train_step)
129
+
130
+ if self.cfg.resume_from_path is not None:
131
+ prior_state_dict = torch.load(self.cfg.resume_from_path, map_location=self.device)
132
+ msg = self.prior.load_state_dict(prior_state_dict, strict=False)
133
+ print(msg)
134
+
135
+ def save_model(self, save_path):
136
+ save_path.mkdir(exist_ok=True, parents=True)
137
+ prior_state_dict = self.prior.state_dict()
138
+ torch.save(prior_state_dict, save_path / "prior.ckpt")
139
+
140
+ def unnormalize_and_pil(self, tensor):
141
+ unnormed = tensor * torch.tensor(self.image_processor.image_std).view(3, 1, 1).to(tensor.device) + torch.tensor(
142
+ self.image_processor.image_mean
143
+ ).view(3, 1, 1).to(tensor.device)
144
+ return transforms.ToPILImage()(unnormed)
145
+
146
+ def save_images(self, image, conds, cond_sequence, target_embeds, label="", save_path=""):
147
+ self.prior.eval()
148
+ input_images = []
149
+ captions = []
150
+ for i in range(len(conds)):
151
+ pil_image = self.unnormalize_and_pil(conds[i]).resize((self.cfg.img_size, self.cfg.img_size))
152
+ input_images.append(pil_image)
153
+ captions.append("Condition")
154
+ if image is not None:
155
+ input_images.append(self.unnormalize_and_pil(image).resize((self.cfg.img_size, self.cfg.img_size)))
156
+ captions.append(f"Target {label}")
157
+
158
+ seeds = range(2)
159
+ output_images = []
160
+ embebds_to_vis = []
161
+ embeds_captions = []
162
+ embebds_to_vis += [target_embeds]
163
+ embeds_captions += ["Target Reconstruct" if image is not None else "Source Reconstruct"]
164
+ if self.cfg.use_ref:
165
+ embebds_to_vis += [cond_sequence[:, :16]]
166
+ embeds_captions += ["Grid Reconstruct"]
167
+ for embs in embebds_to_vis:
168
+ direct_from_emb = self.ip_model.generate(image_prompt_embeds=embs, num_samples=1, num_inference_steps=50)
169
+ output_images = output_images + direct_from_emb
170
+ captions += embeds_captions
171
+
172
+ for seed in seeds:
173
+ for scale in [1, 4]:
174
+ negative_cond_sequence = torch.zeros_like(cond_sequence)
175
+ embeds_len = self.zero_image_embeds.shape[1]
176
+ for i in range(0, negative_cond_sequence.shape[1], embeds_len):
177
+ negative_cond_sequence[:, i : i + embeds_len] = self.zero_image_embeds.detach()
178
+ img_emb = self.prior_pipeline(
179
+ cond_sequence=cond_sequence,
180
+ negative_cond_sequence=negative_cond_sequence,
181
+ num_inference_steps=25,
182
+ num_images_per_prompt=1,
183
+ guidance_scale=scale,
184
+ generator=torch.Generator(device="cuda").manual_seed(seed),
185
+ ).image_embeds
186
+
187
+ for seed_2 in range(1):
188
+ images = self.ip_model.generate(
189
+ image_prompt_embeds=img_emb,
190
+ num_samples=1,
191
+ num_inference_steps=50,
192
+ )
193
+ output_images += images
194
+ captions.append(f"prior_s {seed}, cfg {scale}, unet_s {seed_2}")
195
+
196
+ all_images = input_images + output_images
197
+ gen_images = vis_utils.create_table_plot(images=all_images, captions=captions)
198
+ gen_images.save(save_path)
199
+ self.prior.train()
200
+
201
+ def get_dataloaders(self) -> torch.utils.data.DataLoader:
202
+ dataset_path = self.cfg.dataset_path
203
+ if not isinstance(self.cfg.dataset_path, list):
204
+ dataset_path = [self.cfg.dataset_path]
205
+ datasets = []
206
+ for path in dataset_path:
207
+ datasets.append(
208
+ PartsDataset(
209
+ dataset_dir=path,
210
+ image_processor=self.image_processor,
211
+ use_ref=self.cfg.use_ref,
212
+ max_crops=self.cfg.max_crops,
213
+ sketch_prob=self.cfg.sketch_prob,
214
+ )
215
+ )
216
+ dataset = torch.utils.data.ConcatDataset(datasets)
217
+ print(f"Total number of samples: {len(dataset)}")
218
+ dataset_weights = []
219
+ for single_dataset in datasets:
220
+ dataset_weights.extend([len(dataset) / len(single_dataset)] * len(single_dataset))
221
+ sampler_train = torch.utils.data.WeightedRandomSampler(
222
+ weights=dataset_weights, num_samples=len(dataset_weights)
223
+ )
224
+
225
+ validation_dataset = PartsDataset(
226
+ dataset_dir=self.cfg.val_dataset_path,
227
+ image_processor=self.image_processor,
228
+ use_ref=self.cfg.use_ref,
229
+ max_crops=self.cfg.max_crops,
230
+ sketch_prob=self.cfg.sketch_prob,
231
+ )
232
+ train_dataloader = torch.utils.data.DataLoader(
233
+ dataset,
234
+ batch_size=self.cfg.train_batch_size,
235
+ shuffle=sampler_train is None,
236
+ num_workers=self.cfg.num_workers,
237
+ sampler=sampler_train,
238
+ )
239
+
240
+ validation_dataloader = torch.utils.data.DataLoader(
241
+ validation_dataset,
242
+ batch_size=1,
243
+ shuffle=True,
244
+ num_workers=self.cfg.num_workers,
245
+ )
246
+ return train_dataloader, validation_dataloader
247
+
248
+ def train(self):
249
+ pbar = tqdm(range(self.train_step, self.cfg.max_train_steps + 1))
250
+ # self.log_validation()
251
+
252
+ while self.train_step < self.cfg.max_train_steps:
253
+ train_loss = 0.0
254
+ self.prior.train()
255
+ lossbin = {i: 0 for i in range(10)}
256
+ losscnt = {i: 1e-6 for i in range(10)}
257
+
258
+ for sample_idx, batch in enumerate(self.train_dataloader):
259
+ with self.accelerator.accumulate(self.prior):
260
+ image, cond = batch
261
+
262
+ image = image.to(self.weight_dtype).to(self.accelerator.device)
263
+ if "crops" in cond:
264
+ for crop_ind in range(len(cond["crops"])):
265
+ cond["crops"][crop_ind] = (
266
+ cond["crops"][crop_ind].to(self.weight_dtype).to(self.accelerator.device)
267
+ )
268
+ for key in cond.keys():
269
+ if isinstance(cond[key], torch.Tensor):
270
+ cond[key] = cond[key].to(self.accelerator.device)
271
+
272
+ with torch.no_grad():
273
+ image_embeds = self.ip_model.get_image_embeds(image, skip_uncond=True)
274
+
275
+ b = image_embeds.size(0)
276
+ nt = torch.randn((b,)).to(image_embeds.device)
277
+ t = torch.sigmoid(nt)
278
+ texp = t.view([b, *([1] * len(image_embeds.shape[1:]))])
279
+ z_1 = torch.randn_like(image_embeds)
280
+ noisy_latents = (1 - texp) * image_embeds + texp * z_1
281
+
282
+ target = image_embeds
283
+
284
+ # At some prob uniformly sample across the entire batch so the model also learns to work with unpadded inputs
285
+ if random.random() < 0.5:
286
+ crops_to_keep = random.randint(1, len(cond["crops"]))
287
+ cond["crops"] = cond["crops"][:crops_to_keep]
288
+ cond_crops = cond["crops"]
289
+
290
+ image_embed_inputs = []
291
+ for crop_ind in range(len(cond_crops)):
292
+ image_embed_inputs.append(
293
+ self.ip_model.get_image_embeds(cond_crops[crop_ind], skip_uncond=True)
294
+ )
295
+ input_sequence = torch.cat(image_embed_inputs, dim=1)
296
+
297
+ loss = 0
298
+ image_feat_seq = input_sequence
299
+
300
+ model_pred = self.prior(
301
+ noisy_latents,
302
+ t=t,
303
+ cond=image_feat_seq,
304
+ )
305
+
306
+ batchwise_prior_loss = ((z_1 - target.float() - model_pred.float()) ** 2).mean(
307
+ dim=list(range(1, len(target.shape)))
308
+ )
309
+ tlist = batchwise_prior_loss.detach().cpu().reshape(-1).tolist()
310
+ ttloss = [(tv, tloss) for tv, tloss in zip(t, tlist)]
311
+
312
+ # count based on t
313
+ for t, l in ttloss:
314
+ lossbin[int(t * 10)] += l
315
+ losscnt[int(t * 10)] += 1
316
+
317
+ loss += batchwise_prior_loss.mean()
318
+ # Gather the losses across all processes for logging (if we use distributed training).
319
+ avg_loss = self.accelerator.gather(loss.repeat(self.cfg.train_batch_size)).mean()
320
+ train_loss += avg_loss.item() / self.cfg.gradient_accumulation_steps
321
+
322
+ # Backprop
323
+ self.accelerator.backward(loss)
324
+ if self.accelerator.sync_gradients:
325
+ self.accelerator.clip_grad_norm_(self.prior.parameters(), self.cfg.max_grad_norm)
326
+ self.optimizer.step()
327
+ self.optimizer.zero_grad()
328
+
329
+ # Checks if the accelerator has performed an optimization step behind the scenes
330
+ if self.accelerator.sync_gradients:
331
+ pbar.update(1)
332
+ self.train_step += 1
333
+ train_loss = 0.0
334
+
335
+ if self.accelerator.is_main_process:
336
+
337
+ if self.train_step % self.cfg.checkpointing_steps == 1:
338
+ if self.accelerator.is_main_process:
339
+ save_path = self.cfg.output_dir # / f"learned_prior.pth"
340
+ self.save_model(save_path)
341
+ logger.info(f"Saved state to {save_path}")
342
+ pbar.set_postfix(**{"loss": loss.cpu().detach().item()})
343
+
344
+ if self.cfg.log_image_frequency > 0 and (self.train_step % self.cfg.log_image_frequency == 1):
345
+ image_save_path = self.cfg.output_dir / "images" / f"{self.train_step}_step_images.jpg"
346
+ image_save_path.parent.mkdir(exist_ok=True, parents=True)
347
+ # Apply the full diffusion process
348
+ conds_list = []
349
+ for crop_ind in range(len(cond["crops"])):
350
+ conds_list.append(cond["crops"][crop_ind][0])
351
+
352
+ self.save_images(
353
+ image=image[0],
354
+ conds=conds_list,
355
+ cond_sequence=image_feat_seq[:1],
356
+ target_embeds=target[:1],
357
+ save_path=image_save_path,
358
+ )
359
+
360
+ if self.cfg.log_validation > 0 and (self.train_step % self.cfg.log_validation == 0):
361
+ # Run validation
362
+ self.log_validation()
363
+
364
+ if self.train_step >= self.cfg.max_train_steps:
365
+ break
366
+
367
+ self.train_dataloader, self.validation_dataloader = self.get_dataloaders()
368
+ pbar.close()
369
+
370
+ def log_validation(self):
371
+ for sample_idx, batch in tqdm(enumerate(self.validation_dataloader)):
372
+ image, cond = batch
373
+ image = image.to(self.weight_dtype).to(self.accelerator.device)
374
+ if "crops" in cond:
375
+ for crop_ind in range(len(cond["crops"])):
376
+ cond["crops"][crop_ind] = cond["crops"][crop_ind].to(self.weight_dtype).to(self.accelerator.device)
377
+ for key in cond.keys():
378
+ if isinstance(cond[key], torch.Tensor):
379
+ cond[key] = cond[key].to(self.accelerator.device)
380
+
381
+ with torch.no_grad():
382
+ target_embeds = self.ip_model.get_image_embeds(image, skip_uncond=True)
383
+ crops_to_keep = random.randint(1, len(cond["crops"]))
384
+ cond["crops"] = cond["crops"][:crops_to_keep]
385
+ cond_crops = cond["crops"]
386
+ image_embed_inputs = []
387
+ for crop_ind in range(len(cond_crops)):
388
+ image_embed_inputs.append(self.ip_model.get_image_embeds(cond_crops[crop_ind], skip_uncond=True))
389
+ input_sequence = torch.cat(image_embed_inputs, dim=1)
390
+
391
+ image_save_path = self.cfg.output_dir / "val_images" / f"{self.train_step}_step_{sample_idx}_images.jpg"
392
+ image_save_path.parent.mkdir(exist_ok=True, parents=True)
393
+
394
+ save_target_image = image[0]
395
+ conds_list = []
396
+ for crop_ind in range(len(cond["crops"])):
397
+ conds_list.append(cond["crops"][crop_ind][0])
398
+
399
+ # Apply the full diffusion process
400
+ self.save_images(
401
+ image=save_target_image,
402
+ conds=conds_list,
403
+ cond_sequence=input_sequence[:1],
404
+ target_embeds=target_embeds[:1],
405
+ save_path=image_save_path,
406
+ )
407
+
408
+ if sample_idx == self.cfg.n_val_images:
409
+ break
training/dataset.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import traceback
3
+ from pathlib import Path
4
+
5
+ import einops
6
+ import numpy as np
7
+ import torchvision.transforms as T
8
+ from PIL import Image
9
+ from torch.utils.data import Dataset
10
+ from tqdm import tqdm
11
+
12
+ from utils import bezier_utils
13
+
14
+
15
+ class PartsDataset(Dataset):
16
+ def __init__(
17
+ self,
18
+ dataset_dir: Path,
19
+ clip_image_size: int = 224,
20
+ image_processor=None,
21
+ max_crops=3,
22
+ use_ref: bool = True,
23
+ ref_as_grid: bool = True,
24
+ grid_size: int = 2,
25
+ sketch_prob: float = 0.0,
26
+ ):
27
+ subdirs = [d for d in dataset_dir.iterdir() if d.is_dir()]
28
+
29
+ all_paths = []
30
+ self.subdir_dict = {}
31
+ for subdir in tqdm(subdirs):
32
+ current_paths = list(subdir.glob("*.jpg"))
33
+ current_target_paths = [p for p in current_paths if len(str(p.name).split("_")) == 2]
34
+ if use_ref and len(current_target_paths) < 9:
35
+ # Skip if not enough target images
36
+ continue
37
+ all_paths.extend(current_paths)
38
+ self.subdir_dict[subdir] = current_target_paths
39
+
40
+ print(f"Percentile of valid subdirs: {len(self.subdir_dict) / len(subdirs)}")
41
+ self.target_paths = [p for p in all_paths if len(str(p.name).split("_")) == 2]
42
+ source_paths = [p for p in all_paths if len(str(p.name).split("_")) == 3]
43
+ self.source_target_mappings = {path: [] for path in self.target_paths}
44
+ for source_path in source_paths:
45
+ # Remove last part of the path
46
+ target_path = Path("_".join(str(source_path).split("_")[:-1]) + ".jpg")
47
+ if target_path in self.source_target_mappings:
48
+ self.source_target_mappings[target_path].append(source_path)
49
+ print(f"Loaded {len(self.target_paths)} target images")
50
+
51
+ self.clip_image_size = clip_image_size
52
+
53
+ self.image_processor = image_processor
54
+
55
+ self.max_crops = max_crops
56
+
57
+ self.use_ref = use_ref
58
+
59
+ self.ref_as_grid = ref_as_grid
60
+
61
+ self.grid_size = grid_size
62
+
63
+ self.sketch_prob = sketch_prob
64
+
65
+ def __len__(self):
66
+ return len(self.target_paths)
67
+
68
+ def paste_on_background(self, image, background, min_scale=0.4, max_scale=0.8):
69
+ # Calculate aspect ratio and determine resizing based on the smaller dimension of the background
70
+ aspect_ratio = image.width / image.height
71
+ scale = random.uniform(min_scale, max_scale)
72
+ new_width = int(min(background.width, background.height * aspect_ratio) * scale)
73
+ new_height = int(new_width / aspect_ratio)
74
+
75
+ # Resize image and calculate position
76
+ image = image.resize((new_width, new_height), resample=Image.LANCZOS)
77
+ pos_x = random.randint(0, background.width - new_width)
78
+ pos_y = random.randint(0, background.height - new_height)
79
+
80
+ # Paste the image using its alpha channel as mask if present
81
+ background.paste(image, (pos_x, pos_y), image if "A" in image.mode else None)
82
+ return background
83
+
84
+ def get_random_crop(self, image):
85
+ crop_percent_x = random.uniform(0.8, 1.0)
86
+ crop_percent_y = random.uniform(0.8, 1.0)
87
+ # crop_percent_y = random.uniform(0.1, 0.7)
88
+ crop_x = int(image.width * crop_percent_x)
89
+ crop_y = int(image.height * crop_percent_y)
90
+ x = random.randint(0, image.width - crop_x)
91
+ y = random.randint(0, image.height - crop_y)
92
+ return image.crop((x, y, x + crop_x, y + crop_y))
93
+
94
+ def get_empty_image(self):
95
+ empty_image = Image.new("RGB", (self.clip_image_size, self.clip_image_size), (255, 255, 255))
96
+ return self.image_processor(empty_image)["pixel_values"][0]
97
+
98
+ def __getitem__(self, i: int):
99
+
100
+ out_dict = {}
101
+
102
+ try:
103
+ target_path = self.target_paths[i]
104
+ image = Image.open(target_path).convert("RGB")
105
+
106
+ input_parts = []
107
+
108
+ source_paths = self.source_target_mappings[target_path]
109
+ n_samples = random.randint(1, len(source_paths))
110
+
111
+ n_samples = min(n_samples, self.max_crops)
112
+ source_paths = random.sample(source_paths, n_samples)
113
+
114
+ if random.random() < 0.1:
115
+ # Use empty image, but maybe still pass reference
116
+ source_paths = []
117
+
118
+ if self.use_ref:
119
+ subdir = target_path.parent
120
+ # Take something from same dir
121
+ potential_refs = list(set(self.subdir_dict[subdir]) - {target_path})
122
+ # Choose 4 refs
123
+ reference_paths = random.sample(potential_refs, self.grid_size**2)
124
+ reference_images = [
125
+ np.array(Image.open(reference_path).convert("RGB")) for reference_path in reference_paths
126
+ ]
127
+ # Concat all images as grid of 2x2
128
+ reference_grid = np.stack(reference_images)
129
+ grid_image = einops.rearrange(
130
+ reference_grid,
131
+ "(h w) h1 w1 c -> (h h1) (w w1) c",
132
+ h=self.grid_size,
133
+ )
134
+ reference_image = Image.fromarray(grid_image).resize((512, 512))
135
+
136
+ # Always add the reference image
137
+ input_parts.append(reference_image)
138
+
139
+ # Sample a subset
140
+ for source_path in source_paths:
141
+ source_image = Image.open(source_path).convert("RGB")
142
+ if random.random() < 0.2:
143
+ # Instead of using the source image, use a random crop from the target
144
+ source_image = self.get_random_crop(source_image)
145
+ if random.random() < 0.2:
146
+ source_image = T.v2.RandomRotation(degrees=30, expand=True, fill=255)(source_image)
147
+ object_with_background = Image.new("RGB", image.size, (255, 255, 255))
148
+ self.paste_on_background(source_image, object_with_background, min_scale=0.8, max_scale=0.95)
149
+ if self.sketch_prob > 0 and random.random() < self.sketch_prob:
150
+ num_lines = random.randint(8, 15)
151
+ object_with_background = bezier_utils.get_sketch(
152
+ object_with_background,
153
+ total_curves=num_lines,
154
+ drop_line_prob=0.1,
155
+ )
156
+ input_parts.append(object_with_background)
157
+
158
+ # Always pad to three parts for now
159
+ actual_max_crops = self.max_crops + 1 if self.use_ref else self.max_crops
160
+ while len(input_parts) < actual_max_crops:
161
+ input_parts.append(
162
+ Image.new(
163
+ "RGB",
164
+ (self.clip_image_size, self.clip_image_size),
165
+ (255, 255, 255),
166
+ )
167
+ )
168
+
169
+ except Exception as e:
170
+ print(f"Error processing image: {e}")
171
+ traceback.print_exc()
172
+ empty_image = Image.new("RGB", (self.clip_image_size, self.clip_image_size), (255, 255, 255))
173
+ image = empty_image
174
+ actual_max_crops = self.max_crops + 1 if self.use_ref else self.max_crops
175
+ input_parts = [empty_image] * (actual_max_crops)
176
+
177
+ clip_target_image = self.image_processor(image)["pixel_values"][0]
178
+ clip_parts = [self.image_processor(part)["pixel_values"][0] for part in input_parts]
179
+
180
+ out_dict["crops"] = clip_parts
181
+
182
+ return clip_target_image, out_dict
training/train_config.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass, field
2
+ from pathlib import Path
3
+ from typing import List, Optional, Union
4
+
5
+
6
+ @dataclass
7
+ class TrainConfig:
8
+ # Dataset path
9
+ dataset_path: Union[Path, List[Path]] = Path("datasets/generated/generated_things")
10
+ # Validation dataset path
11
+ val_dataset_path: Path = Path("datasets/generated/generated_things_val")
12
+ # The output directory where the model predictions and checkpoints will be written.
13
+ output_dir: Path = Path("results/my_pit_model")
14
+ # GPU device
15
+ device: str = "cuda:0"
16
+ # The resolution for input images, all the images will be resized to this size
17
+ img_size: int = 1024
18
+ # Batch size (per device) for the training dataloader
19
+ train_batch_size: int = 1
20
+ # Initial learning rate (after the potential warmup period) to use
21
+ lr: float = 1e-5
22
+ # Dataloader num workers.
23
+ num_workers: int = 8
24
+ # The beta1 parameter for the Adam optimizer.
25
+ adam_beta1: float = 0.9
26
+ # The beta2 parameter for the Adam optimizer
27
+ adam_beta2: float = 0.999
28
+ # Weight decay to use
29
+ adam_weight_decay: float = 0.0 # 1e-2
30
+ # Epsilon value for the Adam optimizer
31
+ adam_epsilon: float = 1e-08
32
+ # How often save images. Values less zero - disable saving
33
+ log_image_frequency: int = 500
34
+ # How often to run validation
35
+ log_validation: int = 5000
36
+ # The number of images to save during each validation
37
+ n_val_images: int = 10
38
+ # A seed for reproducible training
39
+ seed: Optional[int] = None
40
+ # The number of accumulation steps to use
41
+ gradient_accumulation_steps: int = 1
42
+ # Whether to use mixed precision training
43
+ mixed_precision: Optional[str] = "fp16"
44
+ # Log to wandb
45
+ report_to: Optional[str] = "wandb"
46
+ # The number of training steps to run
47
+ max_train_steps: int = 1000000
48
+ # Max grad for clipping
49
+ max_grad_norm: float = 1.0
50
+ # How often to save checkpoints
51
+ checkpointing_steps: int = 5000
52
+ # The path to resume from
53
+ resume_from_path: Optional[Path] = None
54
+ # The step to resume from, mainly for logging
55
+ resume_from_step: Optional[int] = None
56
+ # DiT number of layers
57
+ num_layers: int = 8
58
+ # DiT hidden dimensionality
59
+ hidden_dim: int = 2048
60
+ # DiT number of attention heads
61
+ num_attention_heads: int = 32
62
+ # Whether to use a reference grid
63
+ use_ref: bool = False
64
+ # Max number of crops
65
+ max_crops: int = 3
66
+ # Probability of converting to sketch
67
+ sketch_prob: float = 0.0