File size: 5,785 Bytes
153a45e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4559ffe
 
 
 
 
 
153a45e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c089fc
153a45e
 
 
 
 
 
 
 
 
 
 
80bd43d
 
153a45e
 
 
8f82122
 
80bd43d
153a45e
 
 
 
 
80bd43d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153a45e
80bd43d
 
 
 
8f82122
80bd43d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f82122
80bd43d
 
 
153a45e
80bd43d
 
153a45e
 
4559ffe
80bd43d
 
 
 
 
 
 
 
 
 
 
 
 
 
4559ffe
80bd43d
 
 
 
 
 
4559ffe
80bd43d
 
 
 
 
 
 
153a45e
80bd43d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ed8771
153a45e
80bd43d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import gradio as gr
from openai import OpenAI
import os
from datetime import datetime

# App title and description
APP_TITLE = "NO GPU, Multi LLMs Uses"
APP_DESCRIPTION = "Access and chat with multiple language models without requiring a GPU"

# Load environment variables
ACCESS_TOKEN = os.getenv("HF_TOKEN")
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)

# Model categories for better organization
MODEL_CATEGORIES = {
    "Qwen": [
        "Qwen/Qwen2.5-72B-Instruct",
        "Qwen/Qwen2.5-3B-Instruct",
        "Qwen/Qwen2.5-0.5B-Instruct",
        "Qwen/Qwen2.5-Coder-32B-Instruct",
    ],
    "Meta LLaMa": [
        "meta-llama/Llama-3.3-70B-Instruct",
        "meta-llama/Llama-3.1-70B-Instruct",
        "meta-llama/Llama-3.0-70B-Instruct",
        "meta-llama/Llama-3.2-3B-Instruct",
        "meta-llama/Llama-3.2-1B-Instruct",
        "meta-llama/Llama-3.1-8B-Instruct",
    ],
    "Mistral": [
        "mistralai/Mistral-Nemo-Instruct-2407",
        "mistralai/Mixtral-8x7B-Instruct-v0.1",
        "mistralai/Mistral-7B-Instruct-v0.3",
        "mistralai/Mistral-7B-Instruct-v0.2",
    ],
    "Microsoft Phi": [
        "microsoft/Phi-3.5-mini-instruct",
        "microsoft/Phi-3-mini-128k-instruct",
        "microsoft/Phi-3-mini-4k-instruct",
    ],
    "Other Models": [

        "NousResearch/Hermes-3-Llama-3.1-8B",
        "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
        "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
        "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
        "HuggingFaceH4/zephyr-7b-beta",
        "HuggingFaceTB/SmolLM2-360M-Instruct",
        "tiiuae/falcon-7b-instruct",
        "01-ai/Yi-1.5-34B-Chat",
    ]
}

# Flatten the model list
ALL_MODELS = [m for models in MODEL_CATEGORIES.values() for m in models]

def get_model_info(model_name):
    parts = model_name.split('/')
    if len(parts) != 2:
        return f"**Model:** {model_name}\n**Format:** Unknown"
    org, model = parts
    import re
    size_match = re.search(r'(\d+\.?\d*)B', model)
    size = size_match.group(1) + "B" if size_match else "Unknown"
    return f"**Organization:** {org}\n**Model:** {model}\n**Size:** {size}"

def respond(
    message,
    history,
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    selected_model
):
    # Prepare messages
    if seed == -1:
        seed = None
    messages = [{"role": "system", "content": system_message}]
    for user_msg, assistant_msg in history:
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})
    messages.append({"role": "user", "content": message})

    model_to_use = selected_model or ALL_MODELS[0]

    new_history = list(history) + [(message, "")]
    current_response = ""
    try:
        for chunk in client.chat.completions.create(
            model=model_to_use,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
            frequency_penalty=frequency_penalty,
            seed=seed,
            messages=messages,
        ):
            delta = chunk.choices[0].delta.content
            if delta:
                current_response += delta
                new_history[-1] = (message, current_response)
                yield new_history
    except Exception as e:
        err = f"Error: {e}"
        new_history[-1] = (message, err)
        yield new_history

with gr.Blocks(title=APP_TITLE, theme=gr.themes.Soft()) as demo:
    gr.Markdown(f"## {APP_TITLE}\n\n{APP_DESCRIPTION}")

    with gr.Row():
        with gr.Column(scale=2):
            # Model selection via Dropdown
            selected_model = gr.Dropdown(
                choices=ALL_MODELS,
                value=ALL_MODELS[0],
                label="Select Model"
            )
            model_info = gr.Markdown(get_model_info(ALL_MODELS[0]))

            def update_info(model_name):
                return get_model_info(model_name)
            selected_model.change(
                fn=update_info,
                inputs=[selected_model],
                outputs=[model_info]
            )

            # Conversation settings
            system_message = gr.Textbox(
                value="You are a helpful assistant.",
                label="System Prompt",
                lines=2
            )

            max_tokens = gr.Slider(1, 4096, value=512, label="Max New Tokens")
            temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
            top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-P")
            freq_penalty = gr.Slider(-2.0, 2.0, value=0.0, step=0.1, label="Frequency Penalty")
            seed = gr.Slider(-1, 65535, value=-1, step=1, label="Seed (-1 random)")

        with gr.Column(scale=3):
            chatbot = gr.Chatbot()
            msg = gr.Textbox(placeholder="Type your message here...", show_label=False)
            send_btn = gr.Button("Send")

            send_btn.click(
                fn=respond,
                inputs=[
                    msg, chatbot, system_message,
                    max_tokens, temperature, top_p,
                    freq_penalty, seed, selected_model
                ],
                outputs=[chatbot],
                queue=True
            )
            msg.submit(
                fn=respond,
                inputs=[
                    msg, chatbot, system_message,
                    max_tokens, temperature, top_p,
                    freq_penalty, seed, selected_model
                ],
                outputs=[chatbot],
                queue=True
            )

    demo.launch()