Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,79 +9,10 @@ APP_DESCRIPTION = "Access and chat with multiple language models without requiri
|
|
9 |
|
10 |
# Load environment variables
|
11 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
12 |
-
print("Access token loaded.")
|
13 |
-
|
14 |
client = OpenAI(
|
15 |
base_url="https://api-inference.huggingface.co/v1/",
|
16 |
api_key=ACCESS_TOKEN,
|
17 |
)
|
18 |
-
print("OpenAI client initialized.")
|
19 |
-
|
20 |
-
|
21 |
-
def respond(
|
22 |
-
message,
|
23 |
-
history,
|
24 |
-
system_message,
|
25 |
-
max_tokens,
|
26 |
-
temperature,
|
27 |
-
top_p,
|
28 |
-
frequency_penalty,
|
29 |
-
seed,
|
30 |
-
custom_model
|
31 |
-
):
|
32 |
-
print(f"Received message: {message}")
|
33 |
-
print(f"Selected model: {custom_model}")
|
34 |
-
|
35 |
-
# Convert seed to None if -1 (meaning random)
|
36 |
-
if seed == -1:
|
37 |
-
seed = None
|
38 |
-
|
39 |
-
messages = [{"role": "system", "content": system_message}]
|
40 |
-
|
41 |
-
# Add conversation history to the context
|
42 |
-
for val in history:
|
43 |
-
user_part = val[0]
|
44 |
-
assistant_part = val[1]
|
45 |
-
if user_part:
|
46 |
-
messages.append({"role": "user", "content": user_part})
|
47 |
-
if assistant_part:
|
48 |
-
messages.append({"role": "assistant", "content": assistant_part})
|
49 |
-
|
50 |
-
# Append the latest user message
|
51 |
-
messages.append({"role": "user", "content": message})
|
52 |
-
|
53 |
-
# If user provided a model, use that; otherwise, fall back to a default model
|
54 |
-
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
55 |
-
|
56 |
-
# Create a copy of the history and add the new user message
|
57 |
-
new_history = list(history)
|
58 |
-
new_history.append((message, ""))
|
59 |
-
current_response = ""
|
60 |
-
|
61 |
-
try:
|
62 |
-
for message_chunk in client.chat.completions.create(
|
63 |
-
model=model_to_use,
|
64 |
-
max_tokens=max_tokens,
|
65 |
-
stream=True,
|
66 |
-
temperature=temperature,
|
67 |
-
top_p=top_p,
|
68 |
-
frequency_penalty=frequency_penalty,
|
69 |
-
seed=seed,
|
70 |
-
messages=messages,
|
71 |
-
):
|
72 |
-
token_text = message_chunk.choices[0].delta.content
|
73 |
-
if token_text is not None: # Handle None type in response
|
74 |
-
current_response += token_text
|
75 |
-
# Update just the last message in history
|
76 |
-
new_history[-1] = (message, current_response)
|
77 |
-
yield new_history
|
78 |
-
except Exception as e:
|
79 |
-
error_message = f"Error: {str(e)}\n\nPlease check your model selection and parameters, or try again later."
|
80 |
-
new_history[-1] = (message, error_message)
|
81 |
-
yield new_history
|
82 |
-
|
83 |
-
print("Completed response generation.")
|
84 |
-
|
85 |
|
86 |
# Model categories for better organization
|
87 |
MODEL_CATEGORIES = {
|
@@ -125,370 +56,124 @@ MODEL_CATEGORIES = {
|
|
125 |
]
|
126 |
}
|
127 |
|
128 |
-
# Flatten the model list
|
129 |
-
ALL_MODELS = []
|
130 |
-
for category, models in MODEL_CATEGORIES.items():
|
131 |
-
ALL_MODELS.extend(models)
|
132 |
-
|
133 |
|
134 |
def get_model_info(model_name):
|
135 |
-
"""Extract and format model information for display"""
|
136 |
parts = model_name.split('/')
|
137 |
if len(parts) != 2:
|
138 |
return f"**Model:** {model_name}\n**Format:** Unknown"
|
139 |
-
|
140 |
-
org = parts[0]
|
141 |
-
model = parts[1]
|
142 |
-
|
143 |
-
# Extract numbers from model name to determine size
|
144 |
import re
|
145 |
size_match = re.search(r'(\d+\.?\d*)B', model)
|
146 |
size = size_match.group(1) + "B" if size_match else "Unknown"
|
147 |
-
|
148 |
return f"**Organization:** {org}\n**Model:** {model}\n**Size:** {size}"
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
154 |
try:
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
except Exception as e:
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
def filter_models(search_term):
|
166 |
-
"""Filter models based on search term across all categories"""
|
167 |
-
if not search_term:
|
168 |
-
return MODEL_CATEGORIES
|
169 |
-
|
170 |
-
filtered_categories = {}
|
171 |
-
for category, models in MODEL_CATEGORIES.items():
|
172 |
-
filtered_models = [m for m in models if search_term.lower() in m.lower()]
|
173 |
-
if filtered_models:
|
174 |
-
filtered_categories[category] = filtered_models
|
175 |
-
|
176 |
-
return filtered_categories
|
177 |
-
|
178 |
-
|
179 |
-
def update_model_display(search_term=""):
|
180 |
-
"""Update the model selection UI based on search term"""
|
181 |
-
filtered_categories = filter_models(search_term)
|
182 |
-
|
183 |
-
# Create HTML for model display with a more direct approach
|
184 |
-
html = """
|
185 |
-
<div style='max-height: 400px; overflow-y: auto;'>
|
186 |
-
<script>
|
187 |
-
// Direct model selection function - more reliable
|
188 |
-
function selectModel(modelName) {
|
189 |
-
// Get the textbox element by its ID
|
190 |
-
const modelInput = document.getElementById('custom-model-input');
|
191 |
-
if (modelInput) {
|
192 |
-
// Set the value
|
193 |
-
modelInput.value = modelName;
|
194 |
-
|
195 |
-
// Create and dispatch change event
|
196 |
-
const event = new Event('change', { bubbles: true });
|
197 |
-
modelInput.dispatchEvent(event);
|
198 |
-
|
199 |
-
// Look for the hidden trigger button and click it
|
200 |
-
const triggerBtn = document.querySelector('button[value="Select Model"]');
|
201 |
-
if (triggerBtn) {
|
202 |
-
triggerBtn.click();
|
203 |
-
}
|
204 |
-
|
205 |
-
console.log('Selected model:', modelName);
|
206 |
-
} else {
|
207 |
-
console.error('Model input element not found');
|
208 |
-
}
|
209 |
-
}
|
210 |
-
</script>
|
211 |
-
"""
|
212 |
-
|
213 |
-
# Add models by category
|
214 |
-
for category, models in filtered_categories.items():
|
215 |
-
html += f"<h3>{category}</h3><div style='display: grid; grid-template-columns: repeat(auto-fill, minmax(250px, 1fr)); gap: 10px;'>"
|
216 |
-
|
217 |
-
for model in models:
|
218 |
-
model_short = model.split('/')[-1]
|
219 |
-
escaped_model = model.replace("'", "\\'").replace('"', '\\"')
|
220 |
-
html += f"""
|
221 |
-
<div class='model-card'
|
222 |
-
style='border: 1px solid #ddd; border-radius: 8px; padding: 12px; cursor: pointer; transition: all 0.2s;
|
223 |
-
background: linear-gradient(145deg, #f0f0f0, #ffffff); box-shadow: 0 4px 6px rgba(0,0,0,0.1);'
|
224 |
-
onclick="selectModel('{escaped_model}')">
|
225 |
-
<div style='font-weight: bold; margin-bottom: 6px; color: #1a73e8;'>{model_short}</div>
|
226 |
-
<div style='font-size: 0.8em; color: #666;'>{model.split('/')[0]}</div>
|
227 |
-
</div>
|
228 |
-
"""
|
229 |
-
html += "</div>"
|
230 |
-
|
231 |
-
if not filtered_categories:
|
232 |
-
html += "<p>No models found matching your search.</p>"
|
233 |
-
|
234 |
-
html += "</div>"
|
235 |
-
return html
|
236 |
-
|
237 |
-
|
238 |
-
# Create custom CSS for better styling
|
239 |
-
custom_css = """
|
240 |
-
#app-container {
|
241 |
-
max-width: 1200px;
|
242 |
-
margin: 0 auto;
|
243 |
-
padding: 20px;
|
244 |
-
}
|
245 |
-
|
246 |
-
#chat-container {
|
247 |
-
border-radius: 12px;
|
248 |
-
box-shadow: 0 8px 16px rgba(0,0,0,0.1);
|
249 |
-
overflow: hidden;
|
250 |
-
border: 1px solid #e0e0e0;
|
251 |
-
}
|
252 |
-
|
253 |
-
.contain {
|
254 |
-
background: linear-gradient(135deg, #f5f7fa 0%, #e4e7eb 100%);
|
255 |
-
}
|
256 |
-
|
257 |
-
h1, h2, h3 {
|
258 |
-
font-family: 'Poppins', sans-serif;
|
259 |
-
}
|
260 |
-
|
261 |
-
h1 {
|
262 |
-
background: linear-gradient(90deg, #2b6cb0, #4299e1);
|
263 |
-
-webkit-background-clip: text;
|
264 |
-
-webkit-text-fill-color: transparent;
|
265 |
-
font-weight: 700;
|
266 |
-
letter-spacing: -0.5px;
|
267 |
-
margin-bottom: 8px;
|
268 |
-
}
|
269 |
-
|
270 |
-
.parameter-row {
|
271 |
-
display: flex;
|
272 |
-
gap: 10px;
|
273 |
-
margin-bottom: 10px;
|
274 |
-
}
|
275 |
-
|
276 |
-
.model-card:hover {
|
277 |
-
transform: translateY(-2px);
|
278 |
-
box-shadow: 0 6px 12px rgba(0,0,0,0.15);
|
279 |
-
border-color: #4299e1;
|
280 |
-
}
|
281 |
-
|
282 |
-
.footer {
|
283 |
-
text-align: center;
|
284 |
-
margin-top: 20px;
|
285 |
-
font-size: 0.8em;
|
286 |
-
color: #666;
|
287 |
-
}
|
288 |
-
|
289 |
-
/* Status indicator styles */
|
290 |
-
.status-indicator {
|
291 |
-
display: inline-block;
|
292 |
-
width: 10px;
|
293 |
-
height: 10px;
|
294 |
-
border-radius: 50%;
|
295 |
-
margin-right: 6px;
|
296 |
-
}
|
297 |
-
|
298 |
-
.status-active {
|
299 |
-
background-color: #10B981;
|
300 |
-
animation: pulse 2s infinite;
|
301 |
-
}
|
302 |
|
303 |
-
|
304 |
-
|
305 |
-
box-shadow: 0 0 0 0 rgba(16, 185, 129, 0.7);
|
306 |
-
}
|
307 |
-
70% {
|
308 |
-
box-shadow: 0 0 0 5px rgba(16, 185, 129, 0);
|
309 |
-
}
|
310 |
-
100% {
|
311 |
-
box-shadow: 0 0 0 0 rgba(16, 185, 129, 0);
|
312 |
-
}
|
313 |
-
}
|
314 |
-
"""
|
315 |
|
316 |
-
with gr.Blocks(css=custom_css, title=APP_TITLE, theme=gr.themes.Soft()) as demo:
|
317 |
-
gr.HTML(f"""
|
318 |
-
<div id="app-container">
|
319 |
-
<div style="text-align: center; padding: 20px 0;">
|
320 |
-
<h1 style="font-size: 2.5rem;">{APP_TITLE}</h1>
|
321 |
-
<p style="font-size: 1.1rem; color: #555;">{APP_DESCRIPTION}</p>
|
322 |
-
<div style="margin-top: 10px;">
|
323 |
-
<span class="status-indicator status-active"></span>
|
324 |
-
<span>Service Active</span>
|
325 |
-
<span style="margin-left: 15px;">Last Updated: {datetime.now().strftime('%Y-%m-%d')}</span>
|
326 |
-
</div>
|
327 |
-
</div>
|
328 |
-
</div>
|
329 |
-
""")
|
330 |
-
|
331 |
with gr.Row():
|
332 |
with gr.Column(scale=2):
|
333 |
-
# Model selection
|
334 |
-
gr.
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
|
|
|
|
|
|
|
|
|
|
342 |
)
|
343 |
-
|
344 |
-
#
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
lines=
|
349 |
)
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
gr.
|
356 |
-
|
357 |
-
gr.HTML("</div>")
|
358 |
-
|
359 |
with gr.Column(scale=3):
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
)
|
368 |
-
|
369 |
-
with gr.Row():
|
370 |
-
with gr.Column(scale=8):
|
371 |
-
msg = gr.Textbox(
|
372 |
-
show_label=False,
|
373 |
-
placeholder="Type your message here...",
|
374 |
-
container=False,
|
375 |
-
scale=8
|
376 |
-
)
|
377 |
-
with gr.Column(scale=1, min_width=70):
|
378 |
-
submit_btn = gr.Button("Send", variant="primary", scale=1)
|
379 |
-
|
380 |
-
with gr.Accordion("Conversation Settings", open=False):
|
381 |
-
system_message_box = gr.Textbox(
|
382 |
-
value="You are a helpful assistant.",
|
383 |
-
placeholder="System prompt that guides the assistant's behavior",
|
384 |
-
label="System Prompt",
|
385 |
-
lines=2
|
386 |
-
)
|
387 |
-
|
388 |
-
# Use standard Row/Column layout instead of tabs that might not be available
|
389 |
-
gr.HTML("<h3>Basic Parameters</h3>")
|
390 |
-
with gr.Row():
|
391 |
-
with gr.Column():
|
392 |
-
max_tokens_slider = gr.Slider(
|
393 |
-
minimum=1,
|
394 |
-
maximum=4096,
|
395 |
-
value=512,
|
396 |
-
step=1,
|
397 |
-
label="Max new tokens"
|
398 |
-
)
|
399 |
-
with gr.Column():
|
400 |
-
temperature_slider = gr.Slider(
|
401 |
-
minimum=0.1,
|
402 |
-
maximum=4.0,
|
403 |
-
value=0.7,
|
404 |
-
step=0.1,
|
405 |
-
label="Temperature"
|
406 |
-
)
|
407 |
-
|
408 |
-
gr.HTML("<h3>Advanced Parameters</h3>")
|
409 |
-
with gr.Row():
|
410 |
-
with gr.Column():
|
411 |
-
top_p_slider = gr.Slider(
|
412 |
-
minimum=0.1,
|
413 |
-
maximum=1.0,
|
414 |
-
value=0.95,
|
415 |
-
step=0.05,
|
416 |
-
label="Top-P"
|
417 |
-
)
|
418 |
-
with gr.Column():
|
419 |
-
frequency_penalty_slider = gr.Slider(
|
420 |
-
minimum=-2.0,
|
421 |
-
maximum=2.0,
|
422 |
-
value=0.0,
|
423 |
-
step=0.1,
|
424 |
-
label="Frequency Penalty"
|
425 |
-
)
|
426 |
-
|
427 |
-
seed_slider = gr.Slider(
|
428 |
-
minimum=-1,
|
429 |
-
maximum=65535,
|
430 |
-
value=-1,
|
431 |
-
step=1,
|
432 |
-
label="Seed (-1 for random)"
|
433 |
-
)
|
434 |
-
|
435 |
-
# Footer
|
436 |
-
gr.HTML("""
|
437 |
-
<div class="footer">
|
438 |
-
<p>Created with Gradio • Powered by Hugging Face Inference API</p>
|
439 |
-
<p>This interface allows you to chat with various language models without requiring a GPU</p>
|
440 |
-
</div>
|
441 |
-
""")
|
442 |
-
|
443 |
-
# Add a hidden button to trigger model selection via JavaScript
|
444 |
-
trigger_model_selection = gr.Button("Select Model", visible=False)
|
445 |
-
|
446 |
-
# Set up event handlers
|
447 |
-
msg.submit(
|
448 |
-
fn=respond,
|
449 |
-
inputs=[msg, chatbot, system_message_box, max_tokens_slider, temperature_slider,
|
450 |
-
top_p_slider, frequency_penalty_slider, seed_slider, custom_model_box],
|
451 |
-
outputs=chatbot,
|
452 |
-
queue=True
|
453 |
-
).then(
|
454 |
-
lambda: "", # Clear the message box after sending
|
455 |
-
None,
|
456 |
-
[msg]
|
457 |
-
)
|
458 |
-
|
459 |
-
submit_btn.click(
|
460 |
-
fn=respond,
|
461 |
-
inputs=[msg, chatbot, system_message_box, max_tokens_slider, temperature_slider,
|
462 |
-
top_p_slider, frequency_penalty_slider, seed_slider, custom_model_box],
|
463 |
-
outputs=chatbot,
|
464 |
-
queue=True
|
465 |
-
).then(
|
466 |
-
lambda: "", # Clear the message box after sending
|
467 |
-
None,
|
468 |
-
[msg]
|
469 |
-
)
|
470 |
-
|
471 |
-
# Update model display when search changes
|
472 |
-
model_search_box.change(
|
473 |
-
fn=lambda x: update_model_display(x),
|
474 |
-
inputs=model_search_box,
|
475 |
-
outputs=model_display
|
476 |
-
)
|
477 |
-
|
478 |
-
# Update model info when selection changes
|
479 |
-
custom_model_box.change(
|
480 |
-
fn=set_model_and_update_info,
|
481 |
-
inputs=custom_model_box,
|
482 |
-
outputs=[custom_model_box, model_info_display]
|
483 |
-
)
|
484 |
-
|
485 |
-
# Connect the hidden trigger button to update model info
|
486 |
-
trigger_model_selection.click(
|
487 |
-
fn=set_model_and_update_info,
|
488 |
-
inputs=custom_model_box,
|
489 |
-
outputs=[custom_model_box, model_info_display]
|
490 |
-
)
|
491 |
|
492 |
-
|
493 |
-
print("Launching the enhanced multi-model chat interface.")
|
494 |
-
demo.launch()
|
|
|
9 |
|
10 |
# Load environment variables
|
11 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
|
12 |
client = OpenAI(
|
13 |
base_url="https://api-inference.huggingface.co/v1/",
|
14 |
api_key=ACCESS_TOKEN,
|
15 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Model categories for better organization
|
18 |
MODEL_CATEGORIES = {
|
|
|
56 |
]
|
57 |
}
|
58 |
|
59 |
+
# Flatten the model list
|
60 |
+
ALL_MODELS = [m for models in MODEL_CATEGORIES.values() for m in models]
|
|
|
|
|
|
|
61 |
|
62 |
def get_model_info(model_name):
|
|
|
63 |
parts = model_name.split('/')
|
64 |
if len(parts) != 2:
|
65 |
return f"**Model:** {model_name}\n**Format:** Unknown"
|
66 |
+
org, model = parts
|
|
|
|
|
|
|
|
|
67 |
import re
|
68 |
size_match = re.search(r'(\d+\.?\d*)B', model)
|
69 |
size = size_match.group(1) + "B" if size_match else "Unknown"
|
|
|
70 |
return f"**Organization:** {org}\n**Model:** {model}\n**Size:** {size}"
|
71 |
|
72 |
+
def respond(
|
73 |
+
message,
|
74 |
+
history,
|
75 |
+
system_message,
|
76 |
+
max_tokens,
|
77 |
+
temperature,
|
78 |
+
top_p,
|
79 |
+
frequency_penalty,
|
80 |
+
seed,
|
81 |
+
selected_model
|
82 |
+
):
|
83 |
+
# Prepare messages
|
84 |
+
if seed == -1:
|
85 |
+
seed = None
|
86 |
+
messages = [{"role": "system", "content": system_message}]
|
87 |
+
for user_msg, assistant_msg in history:
|
88 |
+
if user_msg:
|
89 |
+
messages.append({"role": "user", "content": user_msg})
|
90 |
+
if assistant_msg:
|
91 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
92 |
+
messages.append({"role": "user", "content": message})
|
93 |
|
94 |
+
model_to_use = selected_model or ALL_MODELS[0]
|
95 |
+
|
96 |
+
new_history = list(history) + [(message, "")]
|
97 |
+
current_response = ""
|
98 |
try:
|
99 |
+
for chunk in client.chat.completions.create(
|
100 |
+
model=model_to_use,
|
101 |
+
max_tokens=max_tokens,
|
102 |
+
stream=True,
|
103 |
+
temperature=temperature,
|
104 |
+
top_p=top_p,
|
105 |
+
frequency_penalty=frequency_penalty,
|
106 |
+
seed=seed,
|
107 |
+
messages=messages,
|
108 |
+
):
|
109 |
+
delta = chunk.choices[0].delta.content
|
110 |
+
if delta:
|
111 |
+
current_response += delta
|
112 |
+
new_history[-1] = (message, current_response)
|
113 |
+
yield new_history
|
114 |
except Exception as e:
|
115 |
+
err = f"Error: {e}"
|
116 |
+
new_history[-1] = (message, err)
|
117 |
+
yield new_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
with gr.Blocks(title=APP_TITLE, theme=gr.themes.Soft()) as demo:
|
120 |
+
gr.Markdown(f"## {APP_TITLE}\n\n{APP_DESCRIPTION}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
with gr.Row():
|
123 |
with gr.Column(scale=2):
|
124 |
+
# Model selection via Dropdown
|
125 |
+
selected_model = gr.Dropdown(
|
126 |
+
choices=ALL_MODELS,
|
127 |
+
value=ALL_MODELS[0],
|
128 |
+
label="Select Model"
|
129 |
+
)
|
130 |
+
model_info = gr.Markdown(get_model_info(ALL_MODELS[0]))
|
131 |
+
|
132 |
+
def update_info(model_name):
|
133 |
+
return get_model_info(model_name)
|
134 |
+
selected_model.change(
|
135 |
+
fn=update_info,
|
136 |
+
inputs=[selected_model],
|
137 |
+
outputs=[model_info]
|
138 |
)
|
139 |
+
|
140 |
+
# Conversation settings
|
141 |
+
system_message = gr.Textbox(
|
142 |
+
value="You are a helpful assistant.",
|
143 |
+
label="System Prompt",
|
144 |
+
lines=2
|
145 |
)
|
146 |
+
|
147 |
+
max_tokens = gr.Slider(1, 4096, value=512, label="Max New Tokens")
|
148 |
+
temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
|
149 |
+
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-P")
|
150 |
+
freq_penalty = gr.Slider(-2.0, 2.0, value=0.0, step=0.1, label="Frequency Penalty")
|
151 |
+
seed = gr.Slider(-1, 65535, value=-1, step=1, label="Seed (-1 random)")
|
152 |
+
|
|
|
|
|
153 |
with gr.Column(scale=3):
|
154 |
+
chatbot = gr.Chatbot()
|
155 |
+
msg = gr.Textbox(placeholder="Type your message here...", show_label=False)
|
156 |
+
send_btn = gr.Button("Send")
|
157 |
+
|
158 |
+
send_btn.click(
|
159 |
+
fn=respond,
|
160 |
+
inputs=[
|
161 |
+
msg, chatbot, system_message,
|
162 |
+
max_tokens, temperature, top_p,
|
163 |
+
freq_penalty, seed, selected_model
|
164 |
+
],
|
165 |
+
outputs=[chatbot],
|
166 |
+
queue=True
|
167 |
+
)
|
168 |
+
msg.submit(
|
169 |
+
fn=respond,
|
170 |
+
inputs=[
|
171 |
+
msg, chatbot, system_message,
|
172 |
+
max_tokens, temperature, top_p,
|
173 |
+
freq_penalty, seed, selected_model
|
174 |
+
],
|
175 |
+
outputs=[chatbot],
|
176 |
+
queue=True
|
177 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
+
demo.launch()
|
|
|
|