Spaces:
Sleeping
Sleeping
import json | |
import gradio as gr | |
import os | |
import requests | |
from huggingface_hub import AsyncInferenceClient | |
HF_TOKEN = os.getenv('HF_TOKEN') | |
api_url = os.getenv('API_URL') | |
headers = {"Authorization": f"Bearer {HF_TOKEN}"} | |
client = AsyncInferenceClient(api_url) | |
system_message = """ | |
### Instruction: | |
Refactor the provided Python code to improve its maintainability and efficiency and reduce complexity. Include the refactored code along with the comments on the changes made for improving the metrics. | |
### Input: | |
""" | |
title = "Python Refactoring" | |
description = """ | |
Please give it 3 to 4 minutes for the model to load and Run , consider using Python code with less than 120 lines of code due to GPU constrainst | |
""" | |
css = """.toast-wrap { display: none !important } """ | |
examples=[[""" | |
import pandas as pd | |
import re | |
import ast | |
from code_bert_score import score | |
import numpy as np | |
def preprocess_code(source_text): | |
def remove_comments_and_docstrings(source_code): | |
source_code = re.sub(r'#.*', '', source_code) | |
source_code = re.sub(r'(\'\'\'(.*?)\'\'\'|\"\"\"(.*?)\"\"\")', '', source_code, flags=re.DOTALL) | |
return source_code | |
pattern = r"```python\s+(.+?)\s+```" | |
matches = re.findall(pattern, source_text, re.DOTALL) | |
code_to_process = '\n'.join(matches) if matches else source_text | |
cleaned_code = remove_comments_and_docstrings(code_to_process) | |
return cleaned_code | |
def evaluate_dataframe(df): | |
results = {'P': [], 'R': [], 'F1': [], 'F3': []} | |
for index, row in df.iterrows(): | |
try: | |
cands = [preprocess_code(row['generated_text'])] | |
refs = [preprocess_code(row['output'])] | |
P, R, F1, F3 = score(cands, refs, lang='python') | |
results['P'].append(P[0]) | |
results['R'].append(R[0]) | |
results['F1'].append(F1[0]) | |
results['F3'].append(F3[0]) | |
except Exception as e: | |
print(f"Error processing row {index}: {e}") | |
for key in results.keys(): | |
results[key].append(None) | |
df_metrics = pd.DataFrame(results) | |
return df_metrics | |
def evaluate_dataframe_multiple_runs(df, runs=3): | |
all_results = [] | |
for run in range(runs): | |
df_metrics = evaluate_dataframe(df) | |
all_results.append(df_metrics) | |
# Calculate mean and std deviation of metrics across runs | |
df_metrics_mean = pd.concat(all_results).groupby(level=0).mean() | |
df_metrics_std = pd.concat(all_results).groupby(level=0).std() | |
return df_metrics_mean, df_metrics_std | |
""" ] , | |
[""" | |
def analyze_sales_data(sales_records): | |
active_sales = filter(lambda record: record['status'] == 'active', sales_records) | |
sales_by_category = {} | |
for record in active_sales: | |
category = record['category'] | |
total_sales = record['units_sold'] * record['price_per_unit'] | |
if category not in sales_by_category: | |
sales_by_category[category] = {'total_sales': 0, 'total_units': 0} | |
sales_by_category[category]['total_sales'] += total_sales | |
sales_by_category[category]['total_units'] += record['units_sold'] | |
average_sales_data = [] | |
for category, data in sales_by_category.items(): | |
average_sales = data['total_sales'] / data['total_units'] | |
sales_by_category[category]['average_sales'] = average_sales | |
average_sales_data.append((category, average_sales)) | |
average_sales_data.sort(key=lambda x: x[1], reverse=True) | |
for rank, (category, _) in enumerate(average_sales_data, start=1): | |
sales_by_category[category]['rank'] = rank | |
return sales_by_category | |
"""]] | |
# Stream text - stream tokens with InferenceClient from TGI | |
async def predict(message, chatbot, temperature=0.9, max_new_tokens=4096, top_p=0.6, repetition_penalty=1.0,): | |
if system_prompt != "": | |
input_prompt = f"{system_prompt}" | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
input_prompt = input_prompt + str(message) + " [/INST] " | |
partial_message = "" | |
async for token in await client.text_generation(prompt=input_prompt, | |
max_new_tokens=max_new_tokens, | |
stream=True, | |
best_of=1, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
repetition_penalty=repetition_penalty): | |
partial_message = partial_message + token | |
yield partial_message | |
gr.ChatInterface( | |
inference, | |
chatbot=gr.Chatbot(height=500), | |
textbox=gr.Textbox(placeholder="Chat with me!", container=False, scale=7), | |
title=title, | |
description=description, | |
theme="abidlabs/Lime", | |
examples=examples, | |
cache_examples=True, | |
retry_btn="Retry", | |
undo_btn="Undo", | |
clear_btn="Clear", | |
).queue().launch() | |