File size: 5,026 Bytes
90c062f
 
 
 
 
 
 
 
 
 
 
 
 
b485e94
90c062f
b485e94
 
90c062f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b485e94
 
 
 
 
 
 
 
 
 
 
 
 
 
90c062f
b485e94
 
 
 
 
 
 
 
 
90c062f
b485e94
 
 
90c062f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import json 
import gradio as gr
import os
import requests
from huggingface_hub import AsyncInferenceClient

HF_TOKEN = os.getenv('HF_TOKEN')
api_url = os.getenv('API_URL')
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
client = AsyncInferenceClient(api_url)


system_message = """
### Instruction:
Refactor the provided Python code to improve its maintainability and efficiency and reduce complexity. Include the refactored code along with the comments on the changes made for improving the metrics.
### Input:

"""
title = "Python Refactoring"
description = """
Please give it 3 to 4 minutes for the model to load and Run , consider using Python code with less than 120 lines of code due to GPU constrainst
"""
css = """.toast-wrap { display: none !important } """
examples=[["""  
import pandas as pd
import re
import ast
from code_bert_score import score
import numpy as np
def preprocess_code(source_text):
   
    def remove_comments_and_docstrings(source_code):
        source_code = re.sub(r'#.*', '', source_code)
        source_code = re.sub(r'(\'\'\'(.*?)\'\'\'|\"\"\"(.*?)\"\"\")', '', source_code, flags=re.DOTALL)
        return source_code
    pattern = r"```python\s+(.+?)\s+```"
    matches = re.findall(pattern, source_text, re.DOTALL)
    code_to_process = '\n'.join(matches) if matches else source_text
    cleaned_code = remove_comments_and_docstrings(code_to_process)
    return cleaned_code
def evaluate_dataframe(df):
   
    results = {'P': [], 'R': [], 'F1': [], 'F3': []}
    for index, row in df.iterrows():
        try:
            cands = [preprocess_code(row['generated_text'])]
            refs = [preprocess_code(row['output'])]
            P, R, F1, F3 = score(cands, refs, lang='python')
            results['P'].append(P[0])
            results['R'].append(R[0])
            results['F1'].append(F1[0])
            results['F3'].append(F3[0])
        except Exception as e:
            print(f"Error processing row {index}: {e}")
            for key in results.keys():
                results[key].append(None)
    df_metrics = pd.DataFrame(results)
    return df_metrics
def evaluate_dataframe_multiple_runs(df, runs=3):
    
    all_results = []
    for run in range(runs):
        df_metrics = evaluate_dataframe(df)
        all_results.append(df_metrics)
    # Calculate mean and std deviation of metrics across runs
    df_metrics_mean = pd.concat(all_results).groupby(level=0).mean()
    df_metrics_std = pd.concat(all_results).groupby(level=0).std()
    return df_metrics_mean, df_metrics_std
""" ] ,
                         ["""
def analyze_sales_data(sales_records):
    active_sales = filter(lambda record: record['status'] == 'active', sales_records)
    sales_by_category = {}
    for record in active_sales:
        category = record['category']
        total_sales = record['units_sold'] * record['price_per_unit']
        if category not in sales_by_category:
            sales_by_category[category] = {'total_sales': 0, 'total_units': 0}
        sales_by_category[category]['total_sales'] += total_sales
        sales_by_category[category]['total_units'] += record['units_sold']
    average_sales_data = []
    for category, data in sales_by_category.items():
        average_sales = data['total_sales'] / data['total_units']
        sales_by_category[category]['average_sales'] = average_sales
        average_sales_data.append((category, average_sales))
    average_sales_data.sort(key=lambda x: x[1], reverse=True)
    for rank, (category, _) in enumerate(average_sales_data, start=1):
        sales_by_category[category]['rank'] = rank
    return sales_by_category
"""]]


# Stream text - stream tokens with InferenceClient from TGI
async def predict(message, chatbot,  temperature=0.9, max_new_tokens=4096, top_p=0.6, repetition_penalty=1.0,):
    
    if system_prompt != "":
        input_prompt = f"{system_prompt}"
    
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)
    
  
    input_prompt = input_prompt + str(message) + " [/INST] "

    partial_message = ""
    async for token in await client.text_generation(prompt=input_prompt, 
                                    max_new_tokens=max_new_tokens, 
                                    stream=True, 
                                    best_of=1, 
                                    temperature=temperature, 
                                    top_p=top_p, 
                                    do_sample=True, 
                                    repetition_penalty=repetition_penalty):
        partial_message = partial_message + token 
        yield partial_message
        



gr.ChatInterface(
    inference,
    chatbot=gr.Chatbot(height=500),
    textbox=gr.Textbox(placeholder="Chat with me!", container=False, scale=7),
    title=title,
    description=description,
    theme="abidlabs/Lime",
    examples=examples,
    cache_examples=True,
    retry_btn="Retry",
    undo_btn="Undo",
    clear_btn="Clear",
).queue().launch()