Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
import requests
|
5 |
+
from huggingface_hub import AsyncInferenceClient
|
6 |
+
|
7 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
8 |
+
api_url = os.getenv('API_URL')
|
9 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
10 |
+
client = AsyncInferenceClient(api_url)
|
11 |
+
|
12 |
+
|
13 |
+
system_message = """
|
14 |
+
Refactor the provided Python code to improve its maintainability and efficiency and reduce complexity. Include the refactored code along with the comments on the changes made for improving the metrics.
|
15 |
+
"""
|
16 |
+
title = "Python Refactoring"
|
17 |
+
description = """
|
18 |
+
Please give it 3 to 4 minutes for the model to load and Run , consider using Python code with less than 120 lines of code due to GPU constrainst
|
19 |
+
"""
|
20 |
+
css = """.toast-wrap { display: none !important } """
|
21 |
+
examples=[["""
|
22 |
+
import pandas as pd
|
23 |
+
import re
|
24 |
+
import ast
|
25 |
+
from code_bert_score import score
|
26 |
+
import numpy as np
|
27 |
+
def preprocess_code(source_text):
|
28 |
+
|
29 |
+
def remove_comments_and_docstrings(source_code):
|
30 |
+
source_code = re.sub(r'#.*', '', source_code)
|
31 |
+
source_code = re.sub(r'(\'\'\'(.*?)\'\'\'|\"\"\"(.*?)\"\"\")', '', source_code, flags=re.DOTALL)
|
32 |
+
return source_code
|
33 |
+
pattern = r"```python\s+(.+?)\s+```"
|
34 |
+
matches = re.findall(pattern, source_text, re.DOTALL)
|
35 |
+
code_to_process = '\n'.join(matches) if matches else source_text
|
36 |
+
cleaned_code = remove_comments_and_docstrings(code_to_process)
|
37 |
+
return cleaned_code
|
38 |
+
def evaluate_dataframe(df):
|
39 |
+
|
40 |
+
results = {'P': [], 'R': [], 'F1': [], 'F3': []}
|
41 |
+
for index, row in df.iterrows():
|
42 |
+
try:
|
43 |
+
cands = [preprocess_code(row['generated_text'])]
|
44 |
+
refs = [preprocess_code(row['output'])]
|
45 |
+
P, R, F1, F3 = score(cands, refs, lang='python')
|
46 |
+
results['P'].append(P[0])
|
47 |
+
results['R'].append(R[0])
|
48 |
+
results['F1'].append(F1[0])
|
49 |
+
results['F3'].append(F3[0])
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Error processing row {index}: {e}")
|
52 |
+
for key in results.keys():
|
53 |
+
results[key].append(None)
|
54 |
+
df_metrics = pd.DataFrame(results)
|
55 |
+
return df_metrics
|
56 |
+
def evaluate_dataframe_multiple_runs(df, runs=3):
|
57 |
+
|
58 |
+
all_results = []
|
59 |
+
for run in range(runs):
|
60 |
+
df_metrics = evaluate_dataframe(df)
|
61 |
+
all_results.append(df_metrics)
|
62 |
+
# Calculate mean and std deviation of metrics across runs
|
63 |
+
df_metrics_mean = pd.concat(all_results).groupby(level=0).mean()
|
64 |
+
df_metrics_std = pd.concat(all_results).groupby(level=0).std()
|
65 |
+
return df_metrics_mean, df_metrics_std
|
66 |
+
""" ] ,
|
67 |
+
["""
|
68 |
+
def analyze_sales_data(sales_records):
|
69 |
+
active_sales = filter(lambda record: record['status'] == 'active', sales_records)
|
70 |
+
sales_by_category = {}
|
71 |
+
for record in active_sales:
|
72 |
+
category = record['category']
|
73 |
+
total_sales = record['units_sold'] * record['price_per_unit']
|
74 |
+
if category not in sales_by_category:
|
75 |
+
sales_by_category[category] = {'total_sales': 0, 'total_units': 0}
|
76 |
+
sales_by_category[category]['total_sales'] += total_sales
|
77 |
+
sales_by_category[category]['total_units'] += record['units_sold']
|
78 |
+
average_sales_data = []
|
79 |
+
for category, data in sales_by_category.items():
|
80 |
+
average_sales = data['total_sales'] / data['total_units']
|
81 |
+
sales_by_category[category]['average_sales'] = average_sales
|
82 |
+
average_sales_data.append((category, average_sales))
|
83 |
+
average_sales_data.sort(key=lambda x: x[1], reverse=True)
|
84 |
+
for rank, (category, _) in enumerate(average_sales_data, start=1):
|
85 |
+
sales_by_category[category]['rank'] = rank
|
86 |
+
return sales_by_category
|
87 |
+
"""]]
|
88 |
+
|
89 |
+
|
90 |
+
# query client using streaming mode
|
91 |
+
def inference(message, history):
|
92 |
+
partial_message = ""
|
93 |
+
for token in client.text_generation(message, max_new_tokens=4096, stream=True):
|
94 |
+
partial_message += token
|
95 |
+
yield partial_message
|
96 |
+
|
97 |
+
gr.ChatInterface(
|
98 |
+
inference,
|
99 |
+
chatbot=gr.Chatbot(height=500),
|
100 |
+
textbox=gr.Textbox(placeholder="Chat with me!", container=False, scale=7),
|
101 |
+
title=title,
|
102 |
+
description=description,
|
103 |
+
theme="abidlabs/Lime",
|
104 |
+
examples=examples,
|
105 |
+
cache_examples=True,
|
106 |
+
retry_btn="Retry",
|
107 |
+
undo_btn="Undo",
|
108 |
+
clear_btn="Clear",
|
109 |
+
).queue().launch()
|
110 |
+
|