Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The Deeplab2 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Wrappers and conversions for third party pycocotools. | |
This is derived from code in the Tensorflow Object Detection API: | |
https://github.com/tensorflow/models/tree/master/research/object_detection | |
Huang et. al. "Speed/accuracy trade-offs for modern convolutional object | |
detectors" CVPR 2017. | |
""" | |
from typing import Any, Collection, Dict, List, Optional, Union | |
import numpy as np | |
from pycocotools import mask | |
COCO_METRIC_NAMES_AND_INDEX = ( | |
('Precision/mAP', 0), | |
('Precision/[email protected]', 1), | |
('Precision/[email protected]', 2), | |
('Precision/mAP (small)', 3), | |
('Precision/mAP (medium)', 4), | |
('Precision/mAP (large)', 5), | |
('Recall/AR@1', 6), | |
('Recall/AR@10', 7), | |
('Recall/AR@100', 8), | |
('Recall/AR@100 (small)', 9), | |
('Recall/AR@100 (medium)', 10), | |
('Recall/AR@100 (large)', 11) | |
) | |
def _ConvertBoxToCOCOFormat(box: np.ndarray) -> List[float]: | |
"""Converts a box in [ymin, xmin, ymax, xmax] format to COCO format. | |
This is a utility function for converting from our internal | |
[ymin, xmin, ymax, xmax] convention to the convention used by the COCO API | |
i.e., [xmin, ymin, width, height]. | |
Args: | |
box: a [ymin, xmin, ymax, xmax] numpy array | |
Returns: | |
a list of floats representing [xmin, ymin, width, height] | |
""" | |
return [float(box[1]), float(box[0]), float(box[3] - box[1]), | |
float(box[2] - box[0])] | |
def ExportSingleImageGroundtruthToCoco( | |
image_id: Union[int, str], | |
next_annotation_id: int, | |
category_id_set: Collection[int], | |
groundtruth_boxes: np.ndarray, | |
groundtruth_classes: np.ndarray, | |
groundtruth_masks: np.ndarray, | |
groundtruth_is_crowd: Optional[np.ndarray] = None) -> List[Dict[str, Any]]: | |
"""Exports groundtruth of a single image to COCO format. | |
This function converts groundtruth detection annotations represented as numpy | |
arrays to dictionaries that can be ingested by the COCO evaluation API. Note | |
that the image_ids provided here must match the ones given to | |
ExportSingleImageDetectionsToCoco. We assume that boxes and classes are in | |
correspondence - that is: groundtruth_boxes[i, :], and | |
groundtruth_classes[i] are associated with the same groundtruth annotation. | |
In the exported result, "area" fields are always set to the foregorund area of | |
the mask. | |
Args: | |
image_id: a unique image identifier either of type integer or string. | |
next_annotation_id: integer specifying the first id to use for the | |
groundtruth annotations. All annotations are assigned a continuous integer | |
id starting from this value. | |
category_id_set: A set of valid class ids. Groundtruth with classes not in | |
category_id_set are dropped. | |
groundtruth_boxes: numpy array (float32) with shape [num_gt_boxes, 4] | |
groundtruth_classes: numpy array (int) with shape [num_gt_boxes] | |
groundtruth_masks: uint8 numpy array of shape [num_detections, image_height, | |
image_width] containing detection_masks. | |
groundtruth_is_crowd: optional numpy array (int) with shape [num_gt_boxes] | |
indicating whether groundtruth boxes are crowd. | |
Returns: | |
a list of groundtruth annotations for a single image in the COCO format. | |
Raises: | |
ValueError: if (1) groundtruth_boxes and groundtruth_classes do not have the | |
right lengths or (2) if each of the elements inside these lists do not | |
have the correct shapes or (3) if image_ids are not integers | |
""" | |
if len(groundtruth_classes.shape) != 1: | |
raise ValueError('groundtruth_classes is ' | |
'expected to be of rank 1.') | |
if len(groundtruth_boxes.shape) != 2: | |
raise ValueError('groundtruth_boxes is expected to be of ' | |
'rank 2.') | |
if groundtruth_boxes.shape[1] != 4: | |
raise ValueError('groundtruth_boxes should have ' | |
'shape[1] == 4.') | |
num_boxes = groundtruth_classes.shape[0] | |
if num_boxes != groundtruth_boxes.shape[0]: | |
raise ValueError('Corresponding entries in groundtruth_classes, ' | |
'and groundtruth_boxes should have ' | |
'compatible shapes (i.e., agree on the 0th dimension).' | |
'Classes shape: %d. Boxes shape: %d. Image ID: %s' % ( | |
groundtruth_classes.shape[0], | |
groundtruth_boxes.shape[0], image_id)) | |
has_is_crowd = groundtruth_is_crowd is not None | |
if has_is_crowd and len(groundtruth_is_crowd.shape) != 1: | |
raise ValueError('groundtruth_is_crowd is expected to be of rank 1.') | |
groundtruth_list = [] | |
for i in range(num_boxes): | |
if groundtruth_classes[i] in category_id_set: | |
iscrowd = groundtruth_is_crowd[i] if has_is_crowd else 0 | |
segment = mask.encode(np.asfortranarray(groundtruth_masks[i])) | |
area = mask.area(segment) | |
export_dict = { | |
'id': next_annotation_id + i, | |
'image_id': image_id, | |
'category_id': int(groundtruth_classes[i]), | |
'bbox': list(_ConvertBoxToCOCOFormat(groundtruth_boxes[i, :])), | |
'segmentation': segment, | |
'area': area, | |
'iscrowd': iscrowd | |
} | |
groundtruth_list.append(export_dict) | |
return groundtruth_list | |
def ExportSingleImageDetectionMasksToCoco( | |
image_id: Union[int, str], category_id_set: Collection[int], | |
detection_masks: np.ndarray, detection_scores: np.ndarray, | |
detection_classes: np.ndarray) -> List[Dict[str, Any]]: | |
"""Exports detection masks of a single image to COCO format. | |
This function converts detections represented as numpy arrays to dictionaries | |
that can be ingested by the COCO evaluation API. We assume that | |
detection_masks, detection_scores, and detection_classes are in correspondence | |
- that is: detection_masks[i, :], detection_classes[i] and detection_scores[i] | |
are associated with the same annotation. | |
Args: | |
image_id: unique image identifier either of type integer or string. | |
category_id_set: A set of valid class ids. Detections with classes not in | |
category_id_set are dropped. | |
detection_masks: uint8 numpy array of shape [num_detections, image_height, | |
image_width] containing detection_masks. | |
detection_scores: float numpy array of shape [num_detections] containing | |
scores for detection masks. | |
detection_classes: integer numpy array of shape [num_detections] containing | |
the classes for detection masks. | |
Returns: | |
a list of detection mask annotations for a single image in the COCO format. | |
Raises: | |
ValueError: if (1) detection_masks, detection_scores and detection_classes | |
do not have the right lengths or (2) if each of the elements inside these | |
lists do not have the correct shapes or (3) if image_ids are not integers. | |
""" | |
if len(detection_classes.shape) != 1 or len(detection_scores.shape) != 1: | |
raise ValueError('All entries in detection_classes and detection_scores' | |
'expected to be of rank 1.') | |
num_boxes = detection_classes.shape[0] | |
if not num_boxes == len(detection_masks) == detection_scores.shape[0]: | |
raise ValueError('Corresponding entries in detection_classes, ' | |
'detection_scores and detection_masks should have ' | |
'compatible lengths and shapes ' | |
'Classes length: %d. Masks length: %d. ' | |
'Scores length: %d' % ( | |
detection_classes.shape[0], len(detection_masks), | |
detection_scores.shape[0] | |
)) | |
detections_list = [] | |
for i in range(num_boxes): | |
if detection_classes[i] in category_id_set: | |
detections_list.append({ | |
'image_id': image_id, | |
'category_id': int(detection_classes[i]), | |
'segmentation': mask.encode(np.asfortranarray(detection_masks[i])), | |
'score': float(detection_scores[i]) | |
}) | |
return detections_list | |