File size: 8,432 Bytes
0924f30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Wrappers and conversions for third party pycocotools.

This is derived from code in the Tensorflow Object Detection API:
https://github.com/tensorflow/models/tree/master/research/object_detection

Huang et. al. "Speed/accuracy trade-offs for modern convolutional object
detectors" CVPR 2017.
"""

from typing import Any, Collection, Dict, List, Optional, Union

import numpy as np
from pycocotools import mask


COCO_METRIC_NAMES_AND_INDEX = (
    ('Precision/mAP', 0),
    ('Precision/[email protected]', 1),
    ('Precision/[email protected]', 2),
    ('Precision/mAP (small)', 3),
    ('Precision/mAP (medium)', 4),
    ('Precision/mAP (large)', 5),
    ('Recall/AR@1', 6),
    ('Recall/AR@10', 7),
    ('Recall/AR@100', 8),
    ('Recall/AR@100 (small)', 9),
    ('Recall/AR@100 (medium)', 10),
    ('Recall/AR@100 (large)', 11)
)


def _ConvertBoxToCOCOFormat(box: np.ndarray) -> List[float]:
  """Converts a box in [ymin, xmin, ymax, xmax] format to COCO format.

  This is a utility function for converting from our internal
  [ymin, xmin, ymax, xmax] convention to the convention used by the COCO API
  i.e., [xmin, ymin, width, height].

  Args:
    box: a [ymin, xmin, ymax, xmax] numpy array

  Returns:
    a list of floats representing [xmin, ymin, width, height]
  """
  return [float(box[1]), float(box[0]), float(box[3] - box[1]),
          float(box[2] - box[0])]


def ExportSingleImageGroundtruthToCoco(
    image_id: Union[int, str],
    next_annotation_id: int,
    category_id_set: Collection[int],
    groundtruth_boxes: np.ndarray,
    groundtruth_classes: np.ndarray,
    groundtruth_masks: np.ndarray,
    groundtruth_is_crowd: Optional[np.ndarray] = None) -> List[Dict[str, Any]]:
  """Exports groundtruth of a single image to COCO format.

  This function converts groundtruth detection annotations represented as numpy
  arrays to dictionaries that can be ingested by the COCO evaluation API. Note
  that the image_ids provided here must match the ones given to
  ExportSingleImageDetectionsToCoco. We assume that boxes and classes are in
  correspondence - that is: groundtruth_boxes[i, :], and
  groundtruth_classes[i] are associated with the same groundtruth annotation.

  In the exported result, "area" fields are always set to the foregorund area of
  the mask.

  Args:
    image_id: a unique image identifier either of type integer or string.
    next_annotation_id: integer specifying the first id to use for the
      groundtruth annotations. All annotations are assigned a continuous integer
      id starting from this value.
    category_id_set: A set of valid class ids. Groundtruth with classes not in
      category_id_set are dropped.
    groundtruth_boxes: numpy array (float32) with shape [num_gt_boxes, 4]
    groundtruth_classes: numpy array (int) with shape [num_gt_boxes]
    groundtruth_masks: uint8 numpy array of shape [num_detections, image_height,
      image_width] containing detection_masks.
    groundtruth_is_crowd: optional numpy array (int) with shape [num_gt_boxes]
      indicating whether groundtruth boxes are crowd.

  Returns:
    a list of groundtruth annotations for a single image in the COCO format.

  Raises:
    ValueError: if (1) groundtruth_boxes and groundtruth_classes do not have the
      right lengths or (2) if each of the elements inside these lists do not
      have the correct shapes or (3) if image_ids are not integers
  """

  if len(groundtruth_classes.shape) != 1:
    raise ValueError('groundtruth_classes is '
                     'expected to be of rank 1.')
  if len(groundtruth_boxes.shape) != 2:
    raise ValueError('groundtruth_boxes is expected to be of '
                     'rank 2.')
  if groundtruth_boxes.shape[1] != 4:
    raise ValueError('groundtruth_boxes should have '
                     'shape[1] == 4.')
  num_boxes = groundtruth_classes.shape[0]
  if num_boxes != groundtruth_boxes.shape[0]:
    raise ValueError('Corresponding entries in groundtruth_classes, '
                     'and groundtruth_boxes should have '
                     'compatible shapes (i.e., agree on the 0th dimension).'
                     'Classes shape: %d. Boxes shape: %d. Image ID: %s' % (
                         groundtruth_classes.shape[0],
                         groundtruth_boxes.shape[0], image_id))
  has_is_crowd = groundtruth_is_crowd is not None
  if has_is_crowd and len(groundtruth_is_crowd.shape) != 1:
    raise ValueError('groundtruth_is_crowd is expected to be of rank 1.')
  groundtruth_list = []
  for i in range(num_boxes):
    if groundtruth_classes[i] in category_id_set:
      iscrowd = groundtruth_is_crowd[i] if has_is_crowd else 0
      segment = mask.encode(np.asfortranarray(groundtruth_masks[i]))
      area = mask.area(segment)
      export_dict = {
          'id': next_annotation_id + i,
          'image_id': image_id,
          'category_id': int(groundtruth_classes[i]),
          'bbox': list(_ConvertBoxToCOCOFormat(groundtruth_boxes[i, :])),
          'segmentation': segment,
          'area': area,
          'iscrowd': iscrowd
      }

      groundtruth_list.append(export_dict)
  return groundtruth_list


def ExportSingleImageDetectionMasksToCoco(
    image_id: Union[int, str], category_id_set: Collection[int],
    detection_masks: np.ndarray, detection_scores: np.ndarray,
    detection_classes: np.ndarray) -> List[Dict[str, Any]]:
  """Exports detection masks of a single image to COCO format.

  This function converts detections represented as numpy arrays to dictionaries
  that can be ingested by the COCO evaluation API. We assume that
  detection_masks, detection_scores, and detection_classes are in correspondence
  - that is: detection_masks[i, :], detection_classes[i] and detection_scores[i]
    are associated with the same annotation.

  Args:
    image_id: unique image identifier either of type integer or string.
    category_id_set: A set of valid class ids. Detections with classes not in
      category_id_set are dropped.
    detection_masks: uint8 numpy array of shape [num_detections, image_height,
      image_width] containing detection_masks.
    detection_scores: float numpy array of shape [num_detections] containing
      scores for detection masks.
    detection_classes: integer numpy array of shape [num_detections] containing
      the classes for detection masks.

  Returns:
    a list of detection mask annotations for a single image in the COCO format.

  Raises:
    ValueError: if (1) detection_masks, detection_scores and detection_classes
      do not have the right lengths or (2) if each of the elements inside these
      lists do not have the correct shapes or (3) if image_ids are not integers.
  """

  if len(detection_classes.shape) != 1 or len(detection_scores.shape) != 1:
    raise ValueError('All entries in detection_classes and detection_scores'
                     'expected to be of rank 1.')
  num_boxes = detection_classes.shape[0]
  if not num_boxes == len(detection_masks) == detection_scores.shape[0]:
    raise ValueError('Corresponding entries in detection_classes, '
                     'detection_scores and detection_masks should have '
                     'compatible lengths and shapes '
                     'Classes length: %d.  Masks length: %d. '
                     'Scores length: %d' % (
                         detection_classes.shape[0], len(detection_masks),
                         detection_scores.shape[0]
                     ))
  detections_list = []
  for i in range(num_boxes):
    if detection_classes[i] in category_id_set:
      detections_list.append({
          'image_id': image_id,
          'category_id': int(detection_classes[i]),
          'segmentation': mask.encode(np.asfortranarray(detection_masks[i])),
          'score': float(detection_scores[i])
      })
  return detections_list