Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The Deeplab2 Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for panoptic_deeplab.""" | |
import tensorflow as tf | |
from deeplab2 import common | |
from deeplab2 import config_pb2 | |
from deeplab2.model.decoder import panoptic_deeplab | |
from deeplab2.utils import test_utils | |
def _create_panoptic_deeplab_example_proto(num_classes=19): | |
semantic_decoder = config_pb2.DecoderOptions( | |
feature_key='res5', atrous_rates=[6, 12, 18]) | |
semantic_head = config_pb2.HeadOptions( | |
output_channels=num_classes, head_channels=256) | |
instance_decoder = config_pb2.DecoderOptions( | |
feature_key='res5', decoder_channels=128, atrous_rates=[6, 12, 18]) | |
center_head = config_pb2.HeadOptions( | |
output_channels=1, head_channels=32) | |
regression_head = config_pb2.HeadOptions( | |
output_channels=2, head_channels=32) | |
instance_branch = config_pb2.InstanceOptions( | |
instance_decoder_override=instance_decoder, | |
center_head=center_head, | |
regression_head=regression_head) | |
panoptic_deeplab_options = config_pb2.ModelOptions.PanopticDeeplabOptions( | |
semantic_head=semantic_head, instance=instance_branch) | |
# Add features from lowest to highest. | |
panoptic_deeplab_options.low_level.add( | |
feature_key='res3', channels_project=64) | |
panoptic_deeplab_options.low_level.add( | |
feature_key='res2', channels_project=32) | |
return config_pb2.ModelOptions( | |
decoder=semantic_decoder, panoptic_deeplab=panoptic_deeplab_options) | |
def _create_expected_shape(input_shape, output_channels): | |
output_shape = input_shape.copy() | |
output_shape[3] = output_channels | |
return output_shape | |
class PanopticDeeplabTest(tf.test.TestCase): | |
def test_panoptic_deeplab_single_decoder_init_errors(self): | |
with self.assertRaises(ValueError): | |
_ = panoptic_deeplab.PanopticDeepLabSingleDecoder( | |
high_level_feature_name='test', | |
low_level_feature_names=['only_one_name'], # Error: Only one name. | |
low_level_channels_project=[64, 32], | |
aspp_output_channels=256, | |
decoder_output_channels=256, | |
atrous_rates=[6, 12, 18], | |
name='test_decoder') | |
with self.assertRaises(ValueError): | |
_ = panoptic_deeplab.PanopticDeepLabSingleDecoder( | |
high_level_feature_name='test', | |
low_level_feature_names=['one', 'two'], | |
low_level_channels_project=[64], # Error: Only one projection size. | |
aspp_output_channels=256, | |
decoder_output_channels=256, | |
atrous_rates=[6, 12, 18], | |
name='test_decoder') | |
def test_panoptic_deeplab_single_decoder_call_errors(self): | |
decoder = panoptic_deeplab.PanopticDeepLabSingleDecoder( | |
high_level_feature_name='high', | |
low_level_feature_names=['low_one', 'low_two'], | |
low_level_channels_project=[64, 32], | |
aspp_output_channels=256, | |
decoder_output_channels=256, | |
atrous_rates=[6, 12, 18], | |
name='test_decoder') | |
with self.assertRaises(KeyError): | |
input_dict = {'not_high': tf.random.uniform(shape=(2, 32, 32, 512)), | |
'low_one': tf.random.uniform(shape=(2, 128, 128, 128)), | |
'low_two': tf.random.uniform(shape=(2, 256, 256, 64))} | |
_ = decoder(input_dict) | |
with self.assertRaises(KeyError): | |
input_dict = {'high': tf.random.uniform(shape=(2, 32, 32, 512)), | |
'not_low_one': tf.random.uniform(shape=(2, 128, 128, 128)), | |
'low_two': tf.random.uniform(shape=(2, 256, 256, 64))} | |
_ = decoder(input_dict) | |
with self.assertRaises(KeyError): | |
input_dict = {'high': tf.random.uniform(shape=(2, 32, 32, 512)), | |
'low_one': tf.random.uniform(shape=(2, 128, 128, 128)), | |
'not_low_two': tf.random.uniform(shape=(2, 256, 256, 64))} | |
_ = decoder(input_dict) | |
def test_panoptic_deeplab_single_decoder_reset_pooling(self): | |
decoder = panoptic_deeplab.PanopticDeepLabSingleDecoder( | |
high_level_feature_name='high', | |
low_level_feature_names=['low_one', 'low_two'], | |
low_level_channels_project=[64, 32], | |
aspp_output_channels=256, | |
decoder_output_channels=256, | |
atrous_rates=[6, 12, 18], | |
name='test_decoder') | |
pool_size = (None, None) | |
decoder.reset_pooling_layer() | |
self.assertTupleEqual(decoder._aspp._aspp_pool._pool_size, | |
pool_size) | |
def test_panoptic_deeplab_single_decoder_set_pooling(self): | |
decoder = panoptic_deeplab.PanopticDeepLabSingleDecoder( | |
high_level_feature_name='high', | |
low_level_feature_names=['low_one', 'low_two'], | |
low_level_channels_project=[64, 32], | |
aspp_output_channels=256, | |
decoder_output_channels=256, | |
atrous_rates=[6, 12, 18], | |
name='test_decoder') | |
pool_size = (10, 10) | |
decoder.set_pool_size(pool_size) | |
self.assertTupleEqual(decoder._aspp._aspp_pool._pool_size, | |
pool_size) | |
def test_panoptic_deeplab_single_decoder_output_shape(self): | |
decoder_channels = 256 | |
decoder = panoptic_deeplab.PanopticDeepLabSingleDecoder( | |
high_level_feature_name='high', | |
low_level_feature_names=['low_one', 'low_two'], | |
low_level_channels_project=[64, 32], | |
aspp_output_channels=256, | |
decoder_output_channels=decoder_channels, | |
atrous_rates=[6, 12, 18], | |
name='test_decoder') | |
input_shapes_list = [[[2, 128, 128, 128], [2, 256, 256, 64], | |
[2, 32, 32, 512]], | |
[[2, 129, 129, 128], [2, 257, 257, 64], | |
[2, 33, 33, 512]]] | |
for shapes in input_shapes_list: | |
input_dict = {'low_one': tf.random.uniform(shape=shapes[0]), | |
'low_two': tf.random.uniform(shape=shapes[1]), | |
'high': tf.random.uniform(shape=shapes[2])} | |
expected_shape = _create_expected_shape(shapes[1], decoder_channels) | |
resulting_tensor = decoder(input_dict) | |
self.assertListEqual(resulting_tensor.shape.as_list(), expected_shape) | |
def test_panoptic_deeplab_single_head_output_shape(self): | |
output_channels = 19 | |
head = panoptic_deeplab.PanopticDeepLabSingleHead( | |
intermediate_channels=256, | |
output_channels=output_channels, | |
pred_key='pred', | |
name='test_head') | |
input_shapes_list = [[2, 256, 256, 48], [2, 257, 257, 48]] | |
for shape in input_shapes_list: | |
input_tensor = tf.random.uniform(shape=shape) | |
expected_shape = _create_expected_shape(shape, output_channels) | |
resulting_tensor = head(input_tensor) | |
self.assertListEqual(resulting_tensor['pred'].shape.as_list(), | |
expected_shape) | |
def test_panoptic_deeplab_decoder_output_shape(self): | |
num_classes = 31 | |
model_options = _create_panoptic_deeplab_example_proto( | |
num_classes=num_classes) | |
decoder = panoptic_deeplab.PanopticDeepLab( | |
panoptic_deeplab_options=model_options.panoptic_deeplab, | |
decoder_options=model_options.decoder) | |
input_shapes_list = [[[2, 256, 256, 64], [2, 128, 128, 128], | |
[2, 32, 32, 512]], | |
[[2, 257, 257, 64], [2, 129, 129, 128], | |
[2, 33, 33, 512]]] | |
for shapes in input_shapes_list: | |
input_dict = {'res2': tf.random.uniform(shape=shapes[0]), | |
'res3': tf.random.uniform(shape=shapes[1]), | |
'res5': tf.random.uniform(shape=shapes[2])} | |
expected_semantic_shape = _create_expected_shape(shapes[0], num_classes) | |
expected_instance_center_shape = _create_expected_shape(shapes[0], 1) | |
expected_instance_regression_shape = _create_expected_shape(shapes[0], 2) | |
resulting_dict = decoder(input_dict) | |
self.assertListEqual( | |
resulting_dict[common.PRED_SEMANTIC_LOGITS_KEY].shape.as_list(), | |
expected_semantic_shape) | |
self.assertListEqual( | |
resulting_dict[common.PRED_CENTER_HEATMAP_KEY].shape.as_list(), | |
expected_instance_center_shape) | |
self.assertListEqual( | |
resulting_dict[common.PRED_OFFSET_MAP_KEY].shape.as_list(), | |
expected_instance_regression_shape) | |
def test_panoptic_deeplab_sync_bn(self, strategy): | |
num_classes = 31 | |
model_options = _create_panoptic_deeplab_example_proto( | |
num_classes=num_classes) | |
input_dict = {'res2': tf.random.uniform(shape=[2, 257, 257, 64]), | |
'res3': tf.random.uniform(shape=[2, 129, 129, 128]), | |
'res5': tf.random.uniform(shape=[2, 33, 33, 512])} | |
with strategy.scope(): | |
for bn_layer in test_utils.NORMALIZATION_LAYERS: | |
decoder = panoptic_deeplab.PanopticDeepLab( | |
panoptic_deeplab_options=model_options.panoptic_deeplab, | |
decoder_options=model_options.decoder, | |
bn_layer=bn_layer) | |
_ = decoder(input_dict) | |
def test_panoptic_deeplab_single_decoder_logging_feature_order(self): | |
with self.assertLogs(level='WARN'): | |
_ = panoptic_deeplab.PanopticDeepLabSingleDecoder( | |
high_level_feature_name='high', | |
low_level_feature_names=['low_two', 'low_one'], | |
low_level_channels_project=[32, 64], # Potentially wrong order. | |
aspp_output_channels=256, | |
decoder_output_channels=256, | |
atrous_rates=[6, 12, 18], | |
name='test_decoder') | |
def test_panoptic_deeplab_decoder_ckpt_tems(self): | |
num_classes = 31 | |
model_options = _create_panoptic_deeplab_example_proto( | |
num_classes=num_classes) | |
decoder = panoptic_deeplab.PanopticDeepLab( | |
panoptic_deeplab_options=model_options.panoptic_deeplab, | |
decoder_options=model_options.decoder) | |
ckpt_dict = decoder.checkpoint_items | |
self.assertIn(common.CKPT_SEMANTIC_DECODER, ckpt_dict) | |
self.assertIn(common.CKPT_SEMANTIC_HEAD_WITHOUT_LAST_LAYER, ckpt_dict) | |
self.assertIn(common.CKPT_SEMANTIC_LAST_LAYER, ckpt_dict) | |
self.assertIn(common.CKPT_INSTANCE_DECODER, ckpt_dict) | |
self.assertIn(common.CKPT_INSTANCE_REGRESSION_HEAD_WITHOUT_LAST_LAYER, | |
ckpt_dict) | |
self.assertIn(common.CKPT_INSTANCE_REGRESSION_HEAD_LAST_LAYER, ckpt_dict) | |
self.assertIn(common.CKPT_INSTANCE_CENTER_HEAD_WITHOUT_LAST_LAYER, | |
ckpt_dict) | |
self.assertIn(common.CKPT_INSTANCE_CENTER_HEAD_LAST_LAYER, ckpt_dict) | |
if __name__ == '__main__': | |
tf.test.main() | |