Spaces:
Runtime error
Runtime error
File size: 10,964 Bytes
0924f30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for panoptic_deeplab."""
import tensorflow as tf
from deeplab2 import common
from deeplab2 import config_pb2
from deeplab2.model.decoder import panoptic_deeplab
from deeplab2.utils import test_utils
def _create_panoptic_deeplab_example_proto(num_classes=19):
semantic_decoder = config_pb2.DecoderOptions(
feature_key='res5', atrous_rates=[6, 12, 18])
semantic_head = config_pb2.HeadOptions(
output_channels=num_classes, head_channels=256)
instance_decoder = config_pb2.DecoderOptions(
feature_key='res5', decoder_channels=128, atrous_rates=[6, 12, 18])
center_head = config_pb2.HeadOptions(
output_channels=1, head_channels=32)
regression_head = config_pb2.HeadOptions(
output_channels=2, head_channels=32)
instance_branch = config_pb2.InstanceOptions(
instance_decoder_override=instance_decoder,
center_head=center_head,
regression_head=regression_head)
panoptic_deeplab_options = config_pb2.ModelOptions.PanopticDeeplabOptions(
semantic_head=semantic_head, instance=instance_branch)
# Add features from lowest to highest.
panoptic_deeplab_options.low_level.add(
feature_key='res3', channels_project=64)
panoptic_deeplab_options.low_level.add(
feature_key='res2', channels_project=32)
return config_pb2.ModelOptions(
decoder=semantic_decoder, panoptic_deeplab=panoptic_deeplab_options)
def _create_expected_shape(input_shape, output_channels):
output_shape = input_shape.copy()
output_shape[3] = output_channels
return output_shape
class PanopticDeeplabTest(tf.test.TestCase):
def test_panoptic_deeplab_single_decoder_init_errors(self):
with self.assertRaises(ValueError):
_ = panoptic_deeplab.PanopticDeepLabSingleDecoder(
high_level_feature_name='test',
low_level_feature_names=['only_one_name'], # Error: Only one name.
low_level_channels_project=[64, 32],
aspp_output_channels=256,
decoder_output_channels=256,
atrous_rates=[6, 12, 18],
name='test_decoder')
with self.assertRaises(ValueError):
_ = panoptic_deeplab.PanopticDeepLabSingleDecoder(
high_level_feature_name='test',
low_level_feature_names=['one', 'two'],
low_level_channels_project=[64], # Error: Only one projection size.
aspp_output_channels=256,
decoder_output_channels=256,
atrous_rates=[6, 12, 18],
name='test_decoder')
def test_panoptic_deeplab_single_decoder_call_errors(self):
decoder = panoptic_deeplab.PanopticDeepLabSingleDecoder(
high_level_feature_name='high',
low_level_feature_names=['low_one', 'low_two'],
low_level_channels_project=[64, 32],
aspp_output_channels=256,
decoder_output_channels=256,
atrous_rates=[6, 12, 18],
name='test_decoder')
with self.assertRaises(KeyError):
input_dict = {'not_high': tf.random.uniform(shape=(2, 32, 32, 512)),
'low_one': tf.random.uniform(shape=(2, 128, 128, 128)),
'low_two': tf.random.uniform(shape=(2, 256, 256, 64))}
_ = decoder(input_dict)
with self.assertRaises(KeyError):
input_dict = {'high': tf.random.uniform(shape=(2, 32, 32, 512)),
'not_low_one': tf.random.uniform(shape=(2, 128, 128, 128)),
'low_two': tf.random.uniform(shape=(2, 256, 256, 64))}
_ = decoder(input_dict)
with self.assertRaises(KeyError):
input_dict = {'high': tf.random.uniform(shape=(2, 32, 32, 512)),
'low_one': tf.random.uniform(shape=(2, 128, 128, 128)),
'not_low_two': tf.random.uniform(shape=(2, 256, 256, 64))}
_ = decoder(input_dict)
def test_panoptic_deeplab_single_decoder_reset_pooling(self):
decoder = panoptic_deeplab.PanopticDeepLabSingleDecoder(
high_level_feature_name='high',
low_level_feature_names=['low_one', 'low_two'],
low_level_channels_project=[64, 32],
aspp_output_channels=256,
decoder_output_channels=256,
atrous_rates=[6, 12, 18],
name='test_decoder')
pool_size = (None, None)
decoder.reset_pooling_layer()
self.assertTupleEqual(decoder._aspp._aspp_pool._pool_size,
pool_size)
def test_panoptic_deeplab_single_decoder_set_pooling(self):
decoder = panoptic_deeplab.PanopticDeepLabSingleDecoder(
high_level_feature_name='high',
low_level_feature_names=['low_one', 'low_two'],
low_level_channels_project=[64, 32],
aspp_output_channels=256,
decoder_output_channels=256,
atrous_rates=[6, 12, 18],
name='test_decoder')
pool_size = (10, 10)
decoder.set_pool_size(pool_size)
self.assertTupleEqual(decoder._aspp._aspp_pool._pool_size,
pool_size)
def test_panoptic_deeplab_single_decoder_output_shape(self):
decoder_channels = 256
decoder = panoptic_deeplab.PanopticDeepLabSingleDecoder(
high_level_feature_name='high',
low_level_feature_names=['low_one', 'low_two'],
low_level_channels_project=[64, 32],
aspp_output_channels=256,
decoder_output_channels=decoder_channels,
atrous_rates=[6, 12, 18],
name='test_decoder')
input_shapes_list = [[[2, 128, 128, 128], [2, 256, 256, 64],
[2, 32, 32, 512]],
[[2, 129, 129, 128], [2, 257, 257, 64],
[2, 33, 33, 512]]]
for shapes in input_shapes_list:
input_dict = {'low_one': tf.random.uniform(shape=shapes[0]),
'low_two': tf.random.uniform(shape=shapes[1]),
'high': tf.random.uniform(shape=shapes[2])}
expected_shape = _create_expected_shape(shapes[1], decoder_channels)
resulting_tensor = decoder(input_dict)
self.assertListEqual(resulting_tensor.shape.as_list(), expected_shape)
def test_panoptic_deeplab_single_head_output_shape(self):
output_channels = 19
head = panoptic_deeplab.PanopticDeepLabSingleHead(
intermediate_channels=256,
output_channels=output_channels,
pred_key='pred',
name='test_head')
input_shapes_list = [[2, 256, 256, 48], [2, 257, 257, 48]]
for shape in input_shapes_list:
input_tensor = tf.random.uniform(shape=shape)
expected_shape = _create_expected_shape(shape, output_channels)
resulting_tensor = head(input_tensor)
self.assertListEqual(resulting_tensor['pred'].shape.as_list(),
expected_shape)
def test_panoptic_deeplab_decoder_output_shape(self):
num_classes = 31
model_options = _create_panoptic_deeplab_example_proto(
num_classes=num_classes)
decoder = panoptic_deeplab.PanopticDeepLab(
panoptic_deeplab_options=model_options.panoptic_deeplab,
decoder_options=model_options.decoder)
input_shapes_list = [[[2, 256, 256, 64], [2, 128, 128, 128],
[2, 32, 32, 512]],
[[2, 257, 257, 64], [2, 129, 129, 128],
[2, 33, 33, 512]]]
for shapes in input_shapes_list:
input_dict = {'res2': tf.random.uniform(shape=shapes[0]),
'res3': tf.random.uniform(shape=shapes[1]),
'res5': tf.random.uniform(shape=shapes[2])}
expected_semantic_shape = _create_expected_shape(shapes[0], num_classes)
expected_instance_center_shape = _create_expected_shape(shapes[0], 1)
expected_instance_regression_shape = _create_expected_shape(shapes[0], 2)
resulting_dict = decoder(input_dict)
self.assertListEqual(
resulting_dict[common.PRED_SEMANTIC_LOGITS_KEY].shape.as_list(),
expected_semantic_shape)
self.assertListEqual(
resulting_dict[common.PRED_CENTER_HEATMAP_KEY].shape.as_list(),
expected_instance_center_shape)
self.assertListEqual(
resulting_dict[common.PRED_OFFSET_MAP_KEY].shape.as_list(),
expected_instance_regression_shape)
@test_utils.test_all_strategies
def test_panoptic_deeplab_sync_bn(self, strategy):
num_classes = 31
model_options = _create_panoptic_deeplab_example_proto(
num_classes=num_classes)
input_dict = {'res2': tf.random.uniform(shape=[2, 257, 257, 64]),
'res3': tf.random.uniform(shape=[2, 129, 129, 128]),
'res5': tf.random.uniform(shape=[2, 33, 33, 512])}
with strategy.scope():
for bn_layer in test_utils.NORMALIZATION_LAYERS:
decoder = panoptic_deeplab.PanopticDeepLab(
panoptic_deeplab_options=model_options.panoptic_deeplab,
decoder_options=model_options.decoder,
bn_layer=bn_layer)
_ = decoder(input_dict)
def test_panoptic_deeplab_single_decoder_logging_feature_order(self):
with self.assertLogs(level='WARN'):
_ = panoptic_deeplab.PanopticDeepLabSingleDecoder(
high_level_feature_name='high',
low_level_feature_names=['low_two', 'low_one'],
low_level_channels_project=[32, 64], # Potentially wrong order.
aspp_output_channels=256,
decoder_output_channels=256,
atrous_rates=[6, 12, 18],
name='test_decoder')
def test_panoptic_deeplab_decoder_ckpt_tems(self):
num_classes = 31
model_options = _create_panoptic_deeplab_example_proto(
num_classes=num_classes)
decoder = panoptic_deeplab.PanopticDeepLab(
panoptic_deeplab_options=model_options.panoptic_deeplab,
decoder_options=model_options.decoder)
ckpt_dict = decoder.checkpoint_items
self.assertIn(common.CKPT_SEMANTIC_DECODER, ckpt_dict)
self.assertIn(common.CKPT_SEMANTIC_HEAD_WITHOUT_LAST_LAYER, ckpt_dict)
self.assertIn(common.CKPT_SEMANTIC_LAST_LAYER, ckpt_dict)
self.assertIn(common.CKPT_INSTANCE_DECODER, ckpt_dict)
self.assertIn(common.CKPT_INSTANCE_REGRESSION_HEAD_WITHOUT_LAST_LAYER,
ckpt_dict)
self.assertIn(common.CKPT_INSTANCE_REGRESSION_HEAD_LAST_LAYER, ckpt_dict)
self.assertIn(common.CKPT_INSTANCE_CENTER_HEAD_WITHOUT_LAST_LAYER,
ckpt_dict)
self.assertIn(common.CKPT_INSTANCE_CENTER_HEAD_LAST_LAYER, ckpt_dict)
if __name__ == '__main__':
tf.test.main()
|