Spaces:
Runtime error
Runtime error
# Download the pretrained checkpoints | |
To facilitate the model training, we also provide some checkpoints that are | |
pretrained on ImageNet. | |
After downloading the desired pretrained checkpoint, remember to update | |
the `initial_checkpoint` path in the config files. | |
## Checkpoints | |
**Simple Training Strategy**: This training strategy yields a similar | |
performance to the original ResNet paper [2]. | |
Backbone | Pretrained Dataset | |
-------- | :---------------: | |
ResNet-50 ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/resnet50_imagenet1k.tar.gz)) | ImageNet-1K | |
**Strong Training Strategy**: This training strategy additionally | |
employs AutoAugment [3], label-smoothing [4], and drop-path [5], yielding | |
a stronger performance on ImageNet than the original ResNet paper [2]. | |
Backbone | Pretrained Dataset | |
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :----------------: | |
ResNet-50 ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/resnet50_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
ResNet-50-Beta ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/resnet50_beta_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
Wide-ResNet-41 ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/wide_resnet41_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
SWideRNet-SAC-(1, 1, 1) ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/swidernet_sac_1_1_1_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
SWideRNet-SAC-(1, 1, 3) ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/swidernet_sac_1_1_3_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
SWideRNet-SAC-(1, 1, 4.5) ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/swidernet_sac_1_1_4.5_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
Axial-SWideRNet-(1, 1, 1) ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/axial_swidernet_1_1_1_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
Axial-SWideRNet-(1, 1, 3) ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/axial_swidernet_1_1_3_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
Axial-SWideRNet-(1, 1, 4.5) ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/axial_swidernet_1_1_4.5_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
MaX-DeepLab-S-Backbone ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/max_deeplab_s_backbone_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
MaX-DeepLab-L-Backbone ([initial_checkpoint](https://storage.googleapis.com/gresearch/tf-deeplab/checkpoint/max_deeplab_l_backbone_imagenet1k_strong_training_strategy.tar.gz)) | ImageNet-1K | |
### References | |
1. Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, | |
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, | |
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. "ImageNet Large | |
Scale Visual Recognition Challenge". IJCV, 2015. | |
2. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual | |
learning for image recognition. In CVPR, 2016. | |
3. Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and | |
Quoc V Le. "Autoaugment: Learning augmentation policies from data". | |
In CVPR, 2019. | |
4. Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and | |
Zbigniew Wojna. "Rethinking the inception architecture for computer | |
vision." In CVPR, 2016. | |
5. Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. | |
"Deep networks with stochastic depth." In ECCV, 2016. | |