Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,41 @@
|
|
1 |
-
# prompt: create a sreamlit app on finetuned llm
|
2 |
-
|
3 |
-
import streamlit as st
|
4 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
model = AutoModelForCausalLM.from_pretrained(
|
10 |
-
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
st.warning("Please enter a prompt.")
|
|
|
1 |
+
# prompt: create a sreamlit app on finetuned llm
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
5 |
+
from peft import PeftModel
|
6 |
+
|
7 |
+
# Load Base Gemma Model (Required for Adapter)
|
8 |
+
base_model_path = "google/gemma-1b"
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
base_model_path,
|
11 |
+
load_in_4bit=True, # Efficient memory usage
|
12 |
+
device_map="auto" # Automatically maps to GPU if available
|
13 |
+
)
|
14 |
+
|
15 |
+
# Load LoRA Adapter
|
16 |
+
model = PeftModel.from_pretrained(model, "fine_tuned_gemma_3_1b/")
|
17 |
+
|
18 |
+
# Load the fine-tuned model and tokenizer
|
19 |
+
# model_path = "fine_tuned_gemma_3_1b" # Replace with the actual path to your model directory
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
21 |
+
# model = AutoModelForCausalLM.from_pretrained(model_path)
|
22 |
+
|
23 |
+
# Create a text generation pipeline
|
24 |
+
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
25 |
+
|
26 |
+
st.title("Fine-tuned Gemma 3.1B LLM")
|
27 |
+
|
28 |
+
# Create a text input box for the user
|
29 |
+
user_input = st.text_area("Enter your prompt:")
|
30 |
+
|
31 |
+
if st.button("Generate Text"):
|
32 |
+
if user_input:
|
33 |
+
# Generate text based on user input
|
34 |
+
output = text_generator(user_input, max_length=150, num_return_sequences=1)
|
35 |
+
generated_text = output[0]['generated_text']
|
36 |
+
|
37 |
+
# Display the generated text
|
38 |
+
st.write("Generated Text:")
|
39 |
+
st.write(generated_text)
|
40 |
+
else:
|
41 |
st.warning("Please enter a prompt.")
|