kanneboinakumar commited on
Commit
9a41484
·
verified ·
1 Parent(s): 92584c1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -28
app.py CHANGED
@@ -1,29 +1,41 @@
1
- # prompt: create a sreamlit app on finetuned llm
2
-
3
- import streamlit as st
4
- from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
5
-
6
- # Load the fine-tuned model and tokenizer
7
- model_path = "fine_tuned_gemma_3_1b" # Replace with the actual path to your model directory
8
- tokenizer = AutoTokenizer.from_pretrained(model_path)
9
- model = AutoModelForCausalLM.from_pretrained(model_path)
10
-
11
- # Create a text generation pipeline
12
- text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
13
-
14
- st.title("Fine-tuned Gemma 3.1B LLM")
15
-
16
- # Create a text input box for the user
17
- user_input = st.text_area("Enter your prompt:")
18
-
19
- if st.button("Generate Text"):
20
- if user_input:
21
- # Generate text based on user input
22
- output = text_generator(user_input, max_length=150, num_return_sequences=1)
23
- generated_text = output[0]['generated_text']
24
-
25
- # Display the generated text
26
- st.write("Generated Text:")
27
- st.write(generated_text)
28
- else:
 
 
 
 
 
 
 
 
 
 
 
 
29
  st.warning("Please enter a prompt.")
 
1
+ # prompt: create a sreamlit app on finetuned llm
2
+
3
+ import streamlit as st
4
+ from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
5
+ from peft import PeftModel
6
+
7
+ # Load Base Gemma Model (Required for Adapter)
8
+ base_model_path = "google/gemma-1b"
9
+ model = AutoModelForCausalLM.from_pretrained(
10
+ base_model_path,
11
+ load_in_4bit=True, # Efficient memory usage
12
+ device_map="auto" # Automatically maps to GPU if available
13
+ )
14
+
15
+ # Load LoRA Adapter
16
+ model = PeftModel.from_pretrained(model, "fine_tuned_gemma_3_1b/")
17
+
18
+ # Load the fine-tuned model and tokenizer
19
+ # model_path = "fine_tuned_gemma_3_1b" # Replace with the actual path to your model directory
20
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
21
+ # model = AutoModelForCausalLM.from_pretrained(model_path)
22
+
23
+ # Create a text generation pipeline
24
+ text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
25
+
26
+ st.title("Fine-tuned Gemma 3.1B LLM")
27
+
28
+ # Create a text input box for the user
29
+ user_input = st.text_area("Enter your prompt:")
30
+
31
+ if st.button("Generate Text"):
32
+ if user_input:
33
+ # Generate text based on user input
34
+ output = text_generator(user_input, max_length=150, num_return_sequences=1)
35
+ generated_text = output[0]['generated_text']
36
+
37
+ # Display the generated text
38
+ st.write("Generated Text:")
39
+ st.write(generated_text)
40
+ else:
41
  st.warning("Please enter a prompt.")