Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +29 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# prompt: create a sreamlit app on finetuned llm
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
5 |
+
|
6 |
+
# Load the fine-tuned model and tokenizer
|
7 |
+
model_path = "fine_tuned_gemma_3_1b" # Replace with the actual path to your model directory
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
10 |
+
|
11 |
+
# Create a text generation pipeline
|
12 |
+
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
13 |
+
|
14 |
+
st.title("Fine-tuned Gemma 3.1B LLM")
|
15 |
+
|
16 |
+
# Create a text input box for the user
|
17 |
+
user_input = st.text_area("Enter your prompt:")
|
18 |
+
|
19 |
+
if st.button("Generate Text"):
|
20 |
+
if user_input:
|
21 |
+
# Generate text based on user input
|
22 |
+
output = text_generator(user_input, max_length=150, num_return_sequences=1)
|
23 |
+
generated_text = output[0]['generated_text']
|
24 |
+
|
25 |
+
# Display the generated text
|
26 |
+
st.write("Generated Text:")
|
27 |
+
st.write(generated_text)
|
28 |
+
else:
|
29 |
+
st.warning("Please enter a prompt.")
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
git+https://github.com/huggingface/[email protected]
|
3 |
+
transformers
|
4 |
+
torch
|