|
r""" Hypercorrelation Squeeze testing code """ |
|
import argparse |
|
|
|
import torch.nn.functional as F |
|
import torch.nn as nn |
|
import torch |
|
|
|
from fewshot_data.model.hsnet import HypercorrSqueezeNetwork |
|
from fewshot_data.common.logger import Logger, AverageMeter |
|
from fewshot_data.common.vis import Visualizer |
|
from fewshot_data.common.evaluation import Evaluator |
|
from fewshot_data.common import utils |
|
from fewshot_data.data.dataset import FSSDataset |
|
|
|
|
|
def test(model, dataloader, nshot): |
|
r""" Test HSNet """ |
|
|
|
|
|
utils.fix_randseed(0) |
|
average_meter = AverageMeter(dataloader.dataset) |
|
|
|
for idx, batch in enumerate(dataloader): |
|
|
|
|
|
batch = utils.to_cuda(batch) |
|
pred_mask = model.module.predict_mask_nshot(batch, nshot=nshot) |
|
|
|
assert pred_mask.size() == batch['query_mask'].size() |
|
|
|
|
|
area_inter, area_union = Evaluator.classify_prediction(pred_mask.clone(), batch) |
|
average_meter.update(area_inter, area_union, batch['class_id'], loss=None) |
|
average_meter.write_process(idx, len(dataloader), epoch=-1, write_batch_idx=1) |
|
|
|
|
|
if Visualizer.visualize: |
|
Visualizer.visualize_prediction_batch(batch['support_imgs'], batch['support_masks'], |
|
batch['query_img'], batch['query_mask'], |
|
pred_mask, batch['class_id'], idx, |
|
area_inter[1].float() / area_union[1].float()) |
|
|
|
average_meter.write_result('Test', 0) |
|
miou, fb_iou = average_meter.compute_iou() |
|
|
|
return miou, fb_iou |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
parser = argparse.ArgumentParser(description='Hypercorrelation Squeeze Pytorch Implementation') |
|
parser.add_argument('--datapath', type=str, default='fewshot_data/Datasets_HSN') |
|
parser.add_argument('--benchmark', type=str, default='pascal', choices=['pascal', 'coco', 'fss']) |
|
parser.add_argument('--logpath', type=str, default='') |
|
parser.add_argument('--bsz', type=int, default=1) |
|
parser.add_argument('--nworker', type=int, default=0) |
|
parser.add_argument('--load', type=str, default='') |
|
parser.add_argument('--fold', type=int, default=0, choices=[0, 1, 2, 3]) |
|
parser.add_argument('--nshot', type=int, default=1) |
|
parser.add_argument('--backbone', type=str, default='resnet101', choices=['vgg16', 'resnet50', 'resnet101']) |
|
parser.add_argument('--visualize', action='store_true') |
|
parser.add_argument('--use_original_imgsize', action='store_true') |
|
args = parser.parse_args() |
|
Logger.initialize(args, training=False) |
|
|
|
|
|
model = HypercorrSqueezeNetwork(args.backbone, args.use_original_imgsize) |
|
model.eval() |
|
Logger.log_params(model) |
|
|
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
Logger.info('# available GPUs: %d' % torch.cuda.device_count()) |
|
model = nn.DataParallel(model) |
|
model.to(device) |
|
|
|
|
|
if args.load == '': raise Exception('Pretrained model not specified.') |
|
model.load_state_dict(torch.load(args.load)) |
|
|
|
|
|
Evaluator.initialize() |
|
Visualizer.initialize(args.visualize) |
|
|
|
|
|
FSSDataset.initialize(img_size=400, datapath=args.datapath, use_original_imgsize=args.use_original_imgsize) |
|
dataloader_test = FSSDataset.build_dataloader(args.benchmark, args.bsz, args.nworker, args.fold, 'test', args.nshot) |
|
|
|
|
|
with torch.no_grad(): |
|
test_miou, test_fb_iou = test(model, dataloader_test, args.nshot) |
|
Logger.info('Fold %d mIoU: %5.2f \t FB-IoU: %5.2f' % (args.fold, test_miou.item(), test_fb_iou.item())) |
|
Logger.info('==================== Finished Testing ====================') |
|
|