kairunwen's picture
Update Code
57746f1
raw
history blame contribute delete
4.02 kB
r""" Hypercorrelation Squeeze testing code """
import argparse
import torch.nn.functional as F
import torch.nn as nn
import torch
from fewshot_data.model.hsnet import HypercorrSqueezeNetwork
from fewshot_data.common.logger import Logger, AverageMeter
from fewshot_data.common.vis import Visualizer
from fewshot_data.common.evaluation import Evaluator
from fewshot_data.common import utils
from fewshot_data.data.dataset import FSSDataset
def test(model, dataloader, nshot):
r""" Test HSNet """
# Freeze randomness during testing for reproducibility
utils.fix_randseed(0)
average_meter = AverageMeter(dataloader.dataset)
for idx, batch in enumerate(dataloader):
# 1. Hypercorrelation Squeeze Networks forward pass
batch = utils.to_cuda(batch)
pred_mask = model.module.predict_mask_nshot(batch, nshot=nshot)
assert pred_mask.size() == batch['query_mask'].size()
# 2. Evaluate prediction
area_inter, area_union = Evaluator.classify_prediction(pred_mask.clone(), batch)
average_meter.update(area_inter, area_union, batch['class_id'], loss=None)
average_meter.write_process(idx, len(dataloader), epoch=-1, write_batch_idx=1)
# Visualize predictions
if Visualizer.visualize:
Visualizer.visualize_prediction_batch(batch['support_imgs'], batch['support_masks'],
batch['query_img'], batch['query_mask'],
pred_mask, batch['class_id'], idx,
area_inter[1].float() / area_union[1].float())
# Write evaluation results
average_meter.write_result('Test', 0)
miou, fb_iou = average_meter.compute_iou()
return miou, fb_iou
if __name__ == '__main__':
# Arguments parsing
parser = argparse.ArgumentParser(description='Hypercorrelation Squeeze Pytorch Implementation')
parser.add_argument('--datapath', type=str, default='fewshot_data/Datasets_HSN')
parser.add_argument('--benchmark', type=str, default='pascal', choices=['pascal', 'coco', 'fss'])
parser.add_argument('--logpath', type=str, default='')
parser.add_argument('--bsz', type=int, default=1)
parser.add_argument('--nworker', type=int, default=0)
parser.add_argument('--load', type=str, default='')
parser.add_argument('--fold', type=int, default=0, choices=[0, 1, 2, 3])
parser.add_argument('--nshot', type=int, default=1)
parser.add_argument('--backbone', type=str, default='resnet101', choices=['vgg16', 'resnet50', 'resnet101'])
parser.add_argument('--visualize', action='store_true')
parser.add_argument('--use_original_imgsize', action='store_true')
args = parser.parse_args()
Logger.initialize(args, training=False)
# Model initialization
model = HypercorrSqueezeNetwork(args.backbone, args.use_original_imgsize)
model.eval()
Logger.log_params(model)
# Device setup
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Logger.info('# available GPUs: %d' % torch.cuda.device_count())
model = nn.DataParallel(model)
model.to(device)
# Load trained model
if args.load == '': raise Exception('Pretrained model not specified.')
model.load_state_dict(torch.load(args.load))
# Helper classes (for testing) initialization
Evaluator.initialize()
Visualizer.initialize(args.visualize)
# Dataset initialization
FSSDataset.initialize(img_size=400, datapath=args.datapath, use_original_imgsize=args.use_original_imgsize)
dataloader_test = FSSDataset.build_dataloader(args.benchmark, args.bsz, args.nworker, args.fold, 'test', args.nshot)
# Test HSNet
with torch.no_grad():
test_miou, test_fb_iou = test(model, dataloader_test, args.nshot)
Logger.info('Fold %d mIoU: %5.2f \t FB-IoU: %5.2f' % (args.fold, test_miou.item(), test_fb_iou.item()))
Logger.info('==================== Finished Testing ====================')