File size: 4,023 Bytes
57746f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
r""" Hypercorrelation Squeeze testing code """
import argparse

import torch.nn.functional as F
import torch.nn as nn
import torch

from fewshot_data.model.hsnet import HypercorrSqueezeNetwork
from fewshot_data.common.logger import Logger, AverageMeter
from fewshot_data.common.vis import Visualizer
from fewshot_data.common.evaluation import Evaluator
from fewshot_data.common import utils
from fewshot_data.data.dataset import FSSDataset


def test(model, dataloader, nshot):
    r""" Test HSNet """

    # Freeze randomness during testing for reproducibility
    utils.fix_randseed(0)
    average_meter = AverageMeter(dataloader.dataset)

    for idx, batch in enumerate(dataloader):

        # 1. Hypercorrelation Squeeze Networks forward pass
        batch = utils.to_cuda(batch)
        pred_mask = model.module.predict_mask_nshot(batch, nshot=nshot)

        assert pred_mask.size() == batch['query_mask'].size()

        # 2. Evaluate prediction
        area_inter, area_union = Evaluator.classify_prediction(pred_mask.clone(), batch)
        average_meter.update(area_inter, area_union, batch['class_id'], loss=None)
        average_meter.write_process(idx, len(dataloader), epoch=-1, write_batch_idx=1)

        # Visualize predictions
        if Visualizer.visualize:
            Visualizer.visualize_prediction_batch(batch['support_imgs'], batch['support_masks'],
                                                  batch['query_img'], batch['query_mask'],
                                                  pred_mask, batch['class_id'], idx,
                                                  area_inter[1].float() / area_union[1].float())
    # Write evaluation results
    average_meter.write_result('Test', 0)
    miou, fb_iou = average_meter.compute_iou()

    return miou, fb_iou


if __name__ == '__main__':

    # Arguments parsing
    parser = argparse.ArgumentParser(description='Hypercorrelation Squeeze Pytorch Implementation')
    parser.add_argument('--datapath', type=str, default='fewshot_data/Datasets_HSN')
    parser.add_argument('--benchmark', type=str, default='pascal', choices=['pascal', 'coco', 'fss'])
    parser.add_argument('--logpath', type=str, default='')
    parser.add_argument('--bsz', type=int, default=1)
    parser.add_argument('--nworker', type=int, default=0)
    parser.add_argument('--load', type=str, default='')
    parser.add_argument('--fold', type=int, default=0, choices=[0, 1, 2, 3])
    parser.add_argument('--nshot', type=int, default=1)
    parser.add_argument('--backbone', type=str, default='resnet101', choices=['vgg16', 'resnet50', 'resnet101'])
    parser.add_argument('--visualize', action='store_true')
    parser.add_argument('--use_original_imgsize', action='store_true')
    args = parser.parse_args()
    Logger.initialize(args, training=False)

    # Model initialization
    model = HypercorrSqueezeNetwork(args.backbone, args.use_original_imgsize)
    model.eval()
    Logger.log_params(model)

    # Device setup
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    Logger.info('# available GPUs: %d' % torch.cuda.device_count())
    model = nn.DataParallel(model)
    model.to(device)

    # Load trained model
    if args.load == '': raise Exception('Pretrained model not specified.')
    model.load_state_dict(torch.load(args.load))

    # Helper classes (for testing) initialization
    Evaluator.initialize()
    Visualizer.initialize(args.visualize)

    # Dataset initialization
    FSSDataset.initialize(img_size=400, datapath=args.datapath, use_original_imgsize=args.use_original_imgsize)
    dataloader_test = FSSDataset.build_dataloader(args.benchmark, args.bsz, args.nworker, args.fold, 'test', args.nshot)

    # Test HSNet
    with torch.no_grad():
        test_miou, test_fb_iou = test(model, dataloader_test, args.nshot)
    Logger.info('Fold %d mIoU: %5.2f \t FB-IoU: %5.2f' % (args.fold, test_miou.item(), test_fb_iou.item()))
    Logger.info('==================== Finished Testing ====================')