|
import gradio as gr |
|
from fastai.vision.all import * |
|
from tools import * |
|
import skimage |
|
|
|
learn = load_learner('panda-model-1.pkl') |
|
|
|
labels = learn.dls.vocab |
|
|
|
def predict(img): |
|
print(type(img)) |
|
print(img.shape) |
|
img = get_crops(PILImage.create(img)) |
|
pred,pred_idx,probs = learn.predict(img) |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
|
|
title = "Prostate cANcer graDe Assessment model" |
|
description = "A model to predict the ISUP grade for prostate cancer based on whole-slide images of digitized H&E-stained biopsies." |
|
|
|
examples = ['example.jpg', 'example2.jpg', 'example3.jpg'] |
|
|
|
gr.Interface(fn=predict,inputs=gr.inputs.Image(),outputs=gr.outputs.Label(num_top_classes=5),title=title,description=description,examples=examples).launch() |
|
|