File size: 917 Bytes
f2ea792 7463538 f2ea792 7463538 f2ea792 f69cd04 f2ea792 b028f72 f69cd04 f2ea792 7463538 f2ea792 7463538 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
import gradio as gr
from fastai.vision.all import *
from tools import *
import skimage
learn = load_learner('panda-model-1.pkl')
labels = learn.dls.vocab
def predict(img):
print(type(img))
print(img.shape)
img = get_crops(PILImage.create(img))
pred,pred_idx,probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
title = "Prostate cANcer graDe Assessment model"
description = "A model to predict the ISUP grade for prostate cancer based on whole-slide images of digitized H&E-stained biopsies."
# article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
examples = ['example.jpg', 'example2.jpg', 'example3.jpg']
gr.Interface(fn=predict,inputs=gr.inputs.Image(),outputs=gr.outputs.Label(num_top_classes=5),title=title,description=description,examples=examples).launch()
|