ece / local_app.py
jordyvl's picture
plt.hist might not be the right plotting device; overrides existing bins
9d4511f
raw
history blame
6.41 kB
import evaluate
import json
import sys
from pathlib import Path
import gradio as gr
import numpy as np
import pandas as pd
import ast
from ece import ECE # loads local instead
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
"""
import seaborn as sns
sns.set_style('white')
sns.set_context("paper", font_scale=1)
"""
# plt.rcParams['figure.figsize'] = [10, 7]
plt.rcParams["figure.dpi"] = 300
plt.switch_backend(
"agg"
) # ; https://stackoverflow.com/questions/14694408/runtimeerror-main-thread-is-not-in-main-loop
sliders = [
gr.Slider(0, 100, value=10, label="n_bins"),
gr.Slider(
0, 100, value=None, label="bin_range", visible=False
), # DEV: need to have a double slider
gr.Dropdown(choices=["equal-range", "equal-mass"], value="equal-range", label="scheme"),
gr.Dropdown(choices=["upper-edge", "center"], value="upper-edge", label="proxy"),
gr.Dropdown(choices=[1, 2, np.inf], value=1, label="p"),
]
slider_defaults = [slider.value for slider in sliders]
# example data
df = dict()
df["predictions"] = [[0.6, 0.2, 0.2], [0, 0.95, 0.05], [0.7, 0.1, 0.2]]
df["references"] = [0, 1, 2]
component = gr.inputs.Dataframe(
headers=["predictions", "references"], col_count=2, datatype="number", type="pandas"
)
component.value = [
[[0.6, 0.2, 0.2], 0],
[[0.7, 0.1, 0.2], 2],
[[0, 0.95, 0.05], 1],
]
sample_data = [[component] + slider_defaults] ##json.dumps(df)
local_path = Path(sys.path[0])
metric = ECE()
# module = evaluate.load("jordyvl/ece")
# launch_gradio_widget(module)
"""
Switch inputs and compute_fn
"""
def default_plot():
fig = plt.figure()
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0))
ranged = np.linspace(0, 1, 10)
ax1.plot(
ranged,
ranged,
color="darkgreen",
ls="dotted",
label="Perfect",
)
ax1.set_ylabel("Conditional Expectation")
ax1.set_ylim([-0.05, 1.05]) # respective to bin range
ax1.legend(loc="lower right")
ax1.set_title("Reliability Diagram")
# Bin frequencies
ax2.set_xlabel("Confidence")
ax2.set_ylabel("Count")
ax2.legend(loc="upper left") # , ncol=2
plt.tight_layout()
return fig
def over_under_confidence(results):
colors = []
for j, bin in enumerate(results["y_bar"]):
perfect = results["y_bar"][j]
empirical = results["p_bar"][j]
bin_color = (
"limegreen"
if perfect == empirical
else "dodgerblue"
if empirical < perfect
else "orangered"
)
colors.append(bin_color)
return colors
def reliability_plot(results):
#DEV: might still need to write tests in case of equal mass binning
fig = plt.figure()
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0))
n_bins = len(results["y_bar"])
bin_range = [
results["y_bar"][0] - results["y_bar"][0],
results["y_bar"][-1],
] # np.linspace(0, 1, n_bins)
# if upper edge then minus binsize; same for center [but half]
# rwidth is dependent on the binning
B, bins, patches = ax1.hist(
results["y_bar"], weights=results["p_bar"][:-1] #rwidth=len(results["p_bar"]/len(results["p_bar"]-1 )) #, range=(0,1),
) # , rwidth=1, align="right") #
colors = over_under_confidence(results)
for b in range(len(B)):
patches[b].set_facecolor(colors[b]) # color based on over/underconfidence
ranged = np.linspace(bin_range[0], bin_range[1], n_bins)
ax1.plot(
ranged,
ranged,
color="limegreen",
ls="dotted",
label="Perfect",
)
ax1handles = [
mpatches.Patch(color="orangered", label="Overconfident"),
mpatches.Patch(color="limegreen", label="Perfect", linestyle="dotted"),
mpatches.Patch(color="dodgerblue", label="Underconfident"),
]
anindices = np.where(~np.isnan(results["p_bar"][:-1]))[0]
bin_freqs = np.zeros(n_bins)
bin_freqs[anindices] = results["bin_freq"]
ax2.hist(results["y_bar"], weights=bin_freqs, color="midnightblue") #bins=results["y_bar"],
# DEV: nicer would be to plot like a polygon
# see: https://github.com/markus93/fit-on-the-test/blob/main/Experiments_Synthetic/binnings.py
acc_plt = ax2.axvline(x=results["accuracy"], ls="solid", lw=3, c="black", label="Accuracy")
conf_plt = ax2.axvline(
x=results["p_bar_cont"], ls="dotted", lw=3, c="#444", label="Avg. confidence"
)
ax2.legend(handles=[acc_plt, conf_plt])
# Bin differences
ax1.set_ylabel("Conditional Expectation")
ax1.set_ylim([0, 1.05]) # respective to bin range
ax1.legend(loc="lower right", handles=ax1handles)
ax1.set_title("Reliability Diagram")
# ax1.set_xticks([0]+results["y_bar"])
ax1.set_xlim([-0.05, 1.05]) # respective to bin range
# Bin frequencies
ax2.set_xlabel("Confidence")
ax2.set_ylabel("Count")
ax2.legend(loc="upper left") # , ncol=2
# ax2.set_xticks([0, ]+results["y_bar"])
ax2.set_xlim([-0.05, 1.05]) # respective to bin range
plt.tight_layout()
return fig
def compute_and_plot(data, n_bins, bin_range, scheme, proxy, p):
# DEV: check on invalid datatypes with better warnings
if isinstance(data, pd.DataFrame):
data.dropna(inplace=True)
predictions = [
ast.literal_eval(prediction) if not isinstance(prediction, list) else prediction
for prediction in data["predictions"]
]
references = [reference for reference in data["references"]]
results = metric._compute(
predictions,
references,
n_bins=n_bins,
scheme=scheme,
proxy=proxy,
p=p,
detail=True,
)
plot = reliability_plot(results)
return results["ECE"], plot
outputs = [gr.outputs.Textbox(label="ECE"), gr.Plot(label="Reliability diagram")]
# outputs[1].value = default_plot().__dict__
iface = gr.Interface(
fn=compute_and_plot,
inputs=[component] + sliders,
outputs=outputs,
description=metric.info.description,
article=evaluate.utils.parse_readme(local_path / "README.md"),
title=f"Metric: {metric.name}",
# examples=sample_data; # ValueError: Examples argument must either be a directory or a nested list, where each sublist represents a set of inputs.
).launch()