Spaces:
Configuration error
Configuration error
File size: 6,411 Bytes
212a8e9 0736615 212a8e9 0736615 212a8e9 9d4511f 0736615 212a8e9 9d4511f 0736615 212a8e9 0736615 212a8e9 0736615 212a8e9 0736615 212a8e9 9d4511f 2afab11 0736615 9d4511f 212a8e9 9d4511f 212a8e9 9d4511f 212a8e9 9d4511f 212a8e9 9d4511f 212a8e9 9d4511f 212a8e9 9d4511f 212a8e9 0736615 212a8e9 0736615 212a8e9 9d4511f 212a8e9 9d4511f 212a8e9 0736615 212a8e9 0736615 9d4511f 212a8e9 0736615 212a8e9 2afab11 212a8e9 9d4511f 212a8e9 0736615 212a8e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import evaluate
import json
import sys
from pathlib import Path
import gradio as gr
import numpy as np
import pandas as pd
import ast
from ece import ECE # loads local instead
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
"""
import seaborn as sns
sns.set_style('white')
sns.set_context("paper", font_scale=1)
"""
# plt.rcParams['figure.figsize'] = [10, 7]
plt.rcParams["figure.dpi"] = 300
plt.switch_backend(
"agg"
) # ; https://stackoverflow.com/questions/14694408/runtimeerror-main-thread-is-not-in-main-loop
sliders = [
gr.Slider(0, 100, value=10, label="n_bins"),
gr.Slider(
0, 100, value=None, label="bin_range", visible=False
), # DEV: need to have a double slider
gr.Dropdown(choices=["equal-range", "equal-mass"], value="equal-range", label="scheme"),
gr.Dropdown(choices=["upper-edge", "center"], value="upper-edge", label="proxy"),
gr.Dropdown(choices=[1, 2, np.inf], value=1, label="p"),
]
slider_defaults = [slider.value for slider in sliders]
# example data
df = dict()
df["predictions"] = [[0.6, 0.2, 0.2], [0, 0.95, 0.05], [0.7, 0.1, 0.2]]
df["references"] = [0, 1, 2]
component = gr.inputs.Dataframe(
headers=["predictions", "references"], col_count=2, datatype="number", type="pandas"
)
component.value = [
[[0.6, 0.2, 0.2], 0],
[[0.7, 0.1, 0.2], 2],
[[0, 0.95, 0.05], 1],
]
sample_data = [[component] + slider_defaults] ##json.dumps(df)
local_path = Path(sys.path[0])
metric = ECE()
# module = evaluate.load("jordyvl/ece")
# launch_gradio_widget(module)
"""
Switch inputs and compute_fn
"""
def default_plot():
fig = plt.figure()
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0))
ranged = np.linspace(0, 1, 10)
ax1.plot(
ranged,
ranged,
color="darkgreen",
ls="dotted",
label="Perfect",
)
ax1.set_ylabel("Conditional Expectation")
ax1.set_ylim([-0.05, 1.05]) # respective to bin range
ax1.legend(loc="lower right")
ax1.set_title("Reliability Diagram")
# Bin frequencies
ax2.set_xlabel("Confidence")
ax2.set_ylabel("Count")
ax2.legend(loc="upper left") # , ncol=2
plt.tight_layout()
return fig
def over_under_confidence(results):
colors = []
for j, bin in enumerate(results["y_bar"]):
perfect = results["y_bar"][j]
empirical = results["p_bar"][j]
bin_color = (
"limegreen"
if perfect == empirical
else "dodgerblue"
if empirical < perfect
else "orangered"
)
colors.append(bin_color)
return colors
def reliability_plot(results):
#DEV: might still need to write tests in case of equal mass binning
fig = plt.figure()
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0))
n_bins = len(results["y_bar"])
bin_range = [
results["y_bar"][0] - results["y_bar"][0],
results["y_bar"][-1],
] # np.linspace(0, 1, n_bins)
# if upper edge then minus binsize; same for center [but half]
# rwidth is dependent on the binning
B, bins, patches = ax1.hist(
results["y_bar"], weights=results["p_bar"][:-1] #rwidth=len(results["p_bar"]/len(results["p_bar"]-1 )) #, range=(0,1),
) # , rwidth=1, align="right") #
colors = over_under_confidence(results)
for b in range(len(B)):
patches[b].set_facecolor(colors[b]) # color based on over/underconfidence
ranged = np.linspace(bin_range[0], bin_range[1], n_bins)
ax1.plot(
ranged,
ranged,
color="limegreen",
ls="dotted",
label="Perfect",
)
ax1handles = [
mpatches.Patch(color="orangered", label="Overconfident"),
mpatches.Patch(color="limegreen", label="Perfect", linestyle="dotted"),
mpatches.Patch(color="dodgerblue", label="Underconfident"),
]
anindices = np.where(~np.isnan(results["p_bar"][:-1]))[0]
bin_freqs = np.zeros(n_bins)
bin_freqs[anindices] = results["bin_freq"]
ax2.hist(results["y_bar"], weights=bin_freqs, color="midnightblue") #bins=results["y_bar"],
# DEV: nicer would be to plot like a polygon
# see: https://github.com/markus93/fit-on-the-test/blob/main/Experiments_Synthetic/binnings.py
acc_plt = ax2.axvline(x=results["accuracy"], ls="solid", lw=3, c="black", label="Accuracy")
conf_plt = ax2.axvline(
x=results["p_bar_cont"], ls="dotted", lw=3, c="#444", label="Avg. confidence"
)
ax2.legend(handles=[acc_plt, conf_plt])
# Bin differences
ax1.set_ylabel("Conditional Expectation")
ax1.set_ylim([0, 1.05]) # respective to bin range
ax1.legend(loc="lower right", handles=ax1handles)
ax1.set_title("Reliability Diagram")
# ax1.set_xticks([0]+results["y_bar"])
ax1.set_xlim([-0.05, 1.05]) # respective to bin range
# Bin frequencies
ax2.set_xlabel("Confidence")
ax2.set_ylabel("Count")
ax2.legend(loc="upper left") # , ncol=2
# ax2.set_xticks([0, ]+results["y_bar"])
ax2.set_xlim([-0.05, 1.05]) # respective to bin range
plt.tight_layout()
return fig
def compute_and_plot(data, n_bins, bin_range, scheme, proxy, p):
# DEV: check on invalid datatypes with better warnings
if isinstance(data, pd.DataFrame):
data.dropna(inplace=True)
predictions = [
ast.literal_eval(prediction) if not isinstance(prediction, list) else prediction
for prediction in data["predictions"]
]
references = [reference for reference in data["references"]]
results = metric._compute(
predictions,
references,
n_bins=n_bins,
scheme=scheme,
proxy=proxy,
p=p,
detail=True,
)
plot = reliability_plot(results)
return results["ECE"], plot
outputs = [gr.outputs.Textbox(label="ECE"), gr.Plot(label="Reliability diagram")]
# outputs[1].value = default_plot().__dict__
iface = gr.Interface(
fn=compute_and_plot,
inputs=[component] + sliders,
outputs=outputs,
description=metric.info.description,
article=evaluate.utils.parse_readme(local_path / "README.md"),
title=f"Metric: {metric.name}",
# examples=sample_data; # ValueError: Examples argument must either be a directory or a nested list, where each sublist represents a set of inputs.
).launch()
|