File size: 6,411 Bytes
212a8e9
0736615
 
 
 
 
212a8e9
 
 
0736615
 
212a8e9
 
9d4511f
0736615
 
212a8e9
 
9d4511f
0736615
212a8e9
0736615
 
 
 
212a8e9
 
 
0736615
 
 
212a8e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0736615
212a8e9
 
 
 
 
 
 
 
9d4511f
2afab11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0736615
9d4511f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212a8e9
9d4511f
212a8e9
 
 
 
 
 
 
 
 
 
9d4511f
 
 
 
 
 
 
212a8e9
 
 
 
 
9d4511f
212a8e9
 
 
9d4511f
 
 
 
 
212a8e9
 
 
 
9d4511f
212a8e9
9d4511f
 
212a8e9
0736615
212a8e9
 
 
 
 
0736615
212a8e9
9d4511f
 
212a8e9
9d4511f
 
212a8e9
0736615
212a8e9
 
0736615
9d4511f
 
212a8e9
 
 
0736615
212a8e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2afab11
212a8e9
 
 
9d4511f
212a8e9
 
 
 
 
 
0736615
 
212a8e9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import evaluate
import json
import sys
from pathlib import Path
import gradio as gr

import numpy as np
import pandas as pd
import ast
from ece import ECE  # loads local instead


import matplotlib.pyplot as plt
import matplotlib.patches as mpatches

"""
import seaborn as sns
sns.set_style('white')
sns.set_context("paper", font_scale=1)
"""
# plt.rcParams['figure.figsize'] = [10, 7]
plt.rcParams["figure.dpi"] = 300
plt.switch_backend(
    "agg"
)  # ; https://stackoverflow.com/questions/14694408/runtimeerror-main-thread-is-not-in-main-loop

sliders = [
    gr.Slider(0, 100, value=10, label="n_bins"),
    gr.Slider(
        0, 100, value=None, label="bin_range", visible=False
    ),  # DEV: need to have a double slider
    gr.Dropdown(choices=["equal-range", "equal-mass"], value="equal-range", label="scheme"),
    gr.Dropdown(choices=["upper-edge", "center"], value="upper-edge", label="proxy"),
    gr.Dropdown(choices=[1, 2, np.inf], value=1, label="p"),
]

slider_defaults = [slider.value for slider in sliders]

# example data
df = dict()
df["predictions"] = [[0.6, 0.2, 0.2], [0, 0.95, 0.05], [0.7, 0.1, 0.2]]
df["references"] = [0, 1, 2]

component = gr.inputs.Dataframe(
    headers=["predictions", "references"], col_count=2, datatype="number", type="pandas"
)

component.value = [
    [[0.6, 0.2, 0.2], 0],
    [[0.7, 0.1, 0.2], 2],
    [[0, 0.95, 0.05], 1],
]
sample_data = [[component] + slider_defaults]  ##json.dumps(df)


local_path = Path(sys.path[0])
metric = ECE()
# module = evaluate.load("jordyvl/ece")
# launch_gradio_widget(module)

"""
Switch inputs and compute_fn
"""


def default_plot():
    fig = plt.figure()
    ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
    ax2 = plt.subplot2grid((3, 1), (2, 0))
    ranged = np.linspace(0, 1, 10)
    ax1.plot(
        ranged,
        ranged,
        color="darkgreen",
        ls="dotted",
        label="Perfect",
    )
    ax1.set_ylabel("Conditional Expectation")
    ax1.set_ylim([-0.05, 1.05])  # respective to bin range
    ax1.legend(loc="lower right")
    ax1.set_title("Reliability Diagram")

    # Bin frequencies
    ax2.set_xlabel("Confidence")
    ax2.set_ylabel("Count")
    ax2.legend(loc="upper left")  # , ncol=2
    plt.tight_layout()
    return fig


def over_under_confidence(results):
    colors = []
    for j, bin in enumerate(results["y_bar"]):
        perfect = results["y_bar"][j]
        empirical = results["p_bar"][j]
        bin_color = (
            "limegreen"
            if perfect == empirical
            else "dodgerblue"
            if empirical < perfect
            else "orangered"
        )
        colors.append(bin_color)
    return colors


def reliability_plot(results):
    #DEV: might still need to write tests in case of equal mass binning
    fig = plt.figure()
    ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
    ax2 = plt.subplot2grid((3, 1), (2, 0))

    n_bins = len(results["y_bar"])
    bin_range = [
        results["y_bar"][0] - results["y_bar"][0],
        results["y_bar"][-1],
    ]  # np.linspace(0, 1, n_bins)
    # if upper edge then minus binsize; same for center [but half]
    # rwidth is dependent on the binning
    B, bins, patches = ax1.hist(
        results["y_bar"], weights=results["p_bar"][:-1] #rwidth=len(results["p_bar"]/len(results["p_bar"]-1 )) #, range=(0,1),
    )  # , rwidth=1, align="right") #    
    colors = over_under_confidence(results)
    for b in range(len(B)):
        patches[b].set_facecolor(colors[b])  # color based on over/underconfidence

    ranged = np.linspace(bin_range[0], bin_range[1], n_bins)
    ax1.plot(
        ranged,
        ranged,
        color="limegreen",
        ls="dotted",
        label="Perfect",
    )
    ax1handles = [
        mpatches.Patch(color="orangered", label="Overconfident"),
        mpatches.Patch(color="limegreen", label="Perfect", linestyle="dotted"),
        mpatches.Patch(color="dodgerblue", label="Underconfident"),
    ]

    anindices = np.where(~np.isnan(results["p_bar"][:-1]))[0]
    bin_freqs = np.zeros(n_bins)
    bin_freqs[anindices] = results["bin_freq"]
    ax2.hist(results["y_bar"], weights=bin_freqs, color="midnightblue") #bins=results["y_bar"], 

    # DEV: nicer would be to plot like a polygon
    # see: https://github.com/markus93/fit-on-the-test/blob/main/Experiments_Synthetic/binnings.py

    acc_plt = ax2.axvline(x=results["accuracy"], ls="solid", lw=3, c="black", label="Accuracy")
    conf_plt = ax2.axvline(
        x=results["p_bar_cont"], ls="dotted", lw=3, c="#444", label="Avg. confidence"
    )
    ax2.legend(handles=[acc_plt, conf_plt])

    # Bin differences
    ax1.set_ylabel("Conditional Expectation")
    ax1.set_ylim([0, 1.05])  # respective to bin range
    ax1.legend(loc="lower right", handles=ax1handles)
    ax1.set_title("Reliability Diagram")
    # ax1.set_xticks([0]+results["y_bar"])
    ax1.set_xlim([-0.05, 1.05])  # respective to bin range

    # Bin frequencies
    ax2.set_xlabel("Confidence")
    ax2.set_ylabel("Count")
    ax2.legend(loc="upper left")  # , ncol=2
    # ax2.set_xticks([0, ]+results["y_bar"])
    ax2.set_xlim([-0.05, 1.05])  # respective to bin range
    plt.tight_layout()
    return fig


def compute_and_plot(data, n_bins, bin_range, scheme, proxy, p):
    # DEV: check on invalid datatypes with better warnings

    if isinstance(data, pd.DataFrame):
        data.dropna(inplace=True)

    predictions = [
        ast.literal_eval(prediction) if not isinstance(prediction, list) else prediction
        for prediction in data["predictions"]
    ]
    references = [reference for reference in data["references"]]

    results = metric._compute(
        predictions,
        references,
        n_bins=n_bins,
        scheme=scheme,
        proxy=proxy,
        p=p,
        detail=True,
    )

    plot = reliability_plot(results)
    return results["ECE"], plot


outputs = [gr.outputs.Textbox(label="ECE"), gr.Plot(label="Reliability diagram")]
# outputs[1].value = default_plot().__dict__

iface = gr.Interface(
    fn=compute_and_plot,
    inputs=[component] + sliders,
    outputs=outputs,
    description=metric.info.description,
    article=evaluate.utils.parse_readme(local_path / "README.md"),
    title=f"Metric: {metric.name}",
    # examples=sample_data; # ValueError: Examples argument must either be a directory or a nested list, where each sublist represents a set of inputs.
).launch()