Comment_Reply / app.py
joey1101's picture
Update app.py
c39c802 verified
raw
history blame
7.2 kB
##########################################
# Step 0: Import required libraries
##########################################
import streamlit as st # For building the web application interface
from transformers import (
pipeline,
SpeechT5Processor,
SpeechT5ForTextToSpeech,
SpeechT5HifiGan,
AutoModelForCausalLM,
AutoTokenizer
) # For sentiment analysis, text-to-speech, and response generation
from datasets import load_dataset # For loading datasets (e.g., speaker embeddings)
import torch # For tensor operations
import soundfile as sf # For saving audio as .wav files
import sentencepiece # Required by SpeechT5Processor for tokenization
##########################################
# Streamlit application title and input
##########################################
# Display a deep blue title in a large, visually appealing font
st.markdown(
"<h1 style='text-align: center; color: #00008B; font-size: 50px;'>🚀 Just Comment</h1>",
unsafe_allow_html=True
) # Set deep blue title
# Display a gentle, warm subtitle below the title
st.markdown(
"<h3 style='text-align: center; color: #5D6D7E; font-style: italic;'>I'm listening to you, my friend~</h3>",
unsafe_allow_html=True
) # Set a friendly subtitle
# Add a text area for user input with placeholder and tooltip
text = st.text_area(
"Enter your comment",
placeholder="Type something here...",
height=100,
help="Write a comment you would like us to respond to!" # Provide tooltip
) # Create text input field
##########################################
# Step 1: Sentiment Analysis Function
##########################################
def analyze_dominant_emotion(user_review):
"""
Analyze the dominant emotion in the user's review using our fine-tuned sentiment analysis model.
"""
emotion_classifier = pipeline(
"text-classification",
model="Thea231/jhartmann_emotion_finetuning",
return_all_scores=True
) # Load our fine-tuned sentiment analysis model from Hugging Face
emotion_results = emotion_classifier(user_review)[0] # Perform sentiment analysis on the user input
dominant_emotion = max(emotion_results, key=lambda x: x['score']) # Extract the emotion with the highest confidence score
return dominant_emotion # Return the dominant emotion with its label and score
##########################################
# Step 2: Response Generation Function
##########################################
def response_gen(user_review):
"""
Generate a logical and complete response based on the sentiment of the user's review.
"""
dominant_emotion = analyze_dominant_emotion(user_review) # Identify the dominant emotion from the user's review
emotion_label = dominant_emotion['label'].lower() # Extract the emotion label and convert it to lowercase
# Define response templates tailored to each emotion
emotion_prompts = {
"anger": (
f"Customer complaint: '{user_review}'\n\n"
"As a customer service representative, write a response that:\n"
"- Sincerely apologizes for the issue\n"
"- Explains how the issue will be resolved\n"
"- Offers compensation where appropriate\n\n"
"Response:"
),
"joy": (
f"Customer review: '{user_review}'\n\n"
"As a customer service representative, write a positive response that:\n"
"- Thanks the customer for their feedback\n"
"- Acknowledges both positive and constructive comments\n"
"- Invites them to explore loyalty programs\n\n"
"Response:"
),
# Add other emotions (e.g., sadness, fear) as needed
}
# Select the appropriate prompt template based on the detected emotion
prompt = emotion_prompts.get(emotion_label, f"Neutral feedback: '{user_review}'\n\nProvide a professional response.")
# Load a small text generation model for generating concise, logical responses
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B") # Load a tokenizer for processing the prompt
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-0.5B") # Load the language model for generating text
inputs = tokenizer(prompt, return_tensors="pt") # Tokenize the input prompt
outputs = model.generate(**inputs, max_new_tokens=100) # Generate a response with a limit on the number of tokens
response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Decode the generated response to text
# Ensure the response length falls within the desired range (50-200 words)
if len(response.split()) < 50 or len(response.split()) > 200:
response = f"Dear customer, thank you for your feedback regarding '{user_review}'. We appreciate your patience and will ensure improvements based on your valuable input." # Fallback response
return response # Return the generated response
##########################################
# Step 3: Text-to-Speech Conversion Function
##########################################
def sound_gen(response):
"""
Convert the generated text response to a speech file and save it locally.
"""
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") # Load the processor for the TTS model
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") # Load the text-to-speech model
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") # Load the vocoder model for audio synthesis
# Load speaker embeddings for generating the audio (neutral female voice)
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") # Load speaker embeddings dataset
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # Select a sample embedding
inputs = processor(text=response, return_tensors="pt") # Convert the text response into processor-compatible format
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings) # Generate speech as a spectrogram
with torch.no_grad(): # Disable gradient computation for audio generation
speech = vocoder(spectrogram) # Convert the spectrogram into an audio waveform
sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000) # Save the audio as a .wav file
st.audio("customer_service_response.wav") # Allow users to play the generated audio in the app
##########################################
# Main Function
##########################################
def main():
"""
Main function to combine sentiment analysis, response generation, and text-to-speech functionality.
"""
if text: # Check if the user has entered a comment in the text area
response = response_gen(text) # Generate an automated response based on the input comment
st.write(f"Generated response: {response}") # Display the generated response in the app
sound_gen(response) # Convert the text response to speech and make it available for playback
# Run the main function when the script is executed
if __name__ == "__main__":
main()