Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,177 +2,109 @@
|
|
2 |
# Step 0: Import required libraries
|
3 |
##########################################
|
4 |
import streamlit as st # For building the web application interface
|
5 |
-
from transformers import (
|
6 |
pipeline,
|
7 |
SpeechT5Processor,
|
8 |
SpeechT5ForTextToSpeech,
|
9 |
SpeechT5HifiGan,
|
10 |
AutoModelForCausalLM,
|
11 |
AutoTokenizer
|
12 |
-
)
|
13 |
-
from datasets import load_dataset # For loading speaker embeddings
|
14 |
import torch # For tensor operations
|
15 |
import soundfile as sf # For saving audio as .wav files
|
16 |
import sentencepiece # Required by SpeechT5Processor for tokenization
|
17 |
|
|
|
18 |
##########################################
|
19 |
# Streamlit application title and input
|
20 |
##########################################
|
21 |
-
# Display a deep blue title
|
22 |
st.markdown(
|
23 |
-
"<h1 style='text-align: center; color: #00008B; font-size: 50px;'
|
24 |
unsafe_allow_html=True
|
25 |
-
) # Set
|
26 |
|
27 |
# Display a gentle, warm subtitle below the title
|
28 |
st.markdown(
|
29 |
-
"<h3 style='text-align: center; color: #5D6D7E; font-style: italic;'>I'm listening to you, my friend
|
30 |
unsafe_allow_html=True
|
31 |
-
) # Set
|
32 |
|
33 |
-
#
|
34 |
text = st.text_area(
|
35 |
"Enter your comment",
|
36 |
placeholder="Type something here...",
|
37 |
height=100,
|
38 |
-
help="Write a comment you would like us to respond to!" #
|
39 |
-
) # Create
|
|
|
|
|
40 |
|
41 |
##########################################
|
42 |
# Step 1: Sentiment Analysis Function
|
43 |
##########################################
|
44 |
def analyze_dominant_emotion(user_review):
|
45 |
"""
|
46 |
-
Analyze the dominant emotion in the user's
|
47 |
"""
|
48 |
-
# Load the fine-tuned sentiment classification model from Hugging Face
|
49 |
emotion_classifier = pipeline(
|
50 |
-
"text-classification",
|
51 |
-
model="Thea231/jhartmann_emotion_finetuning",
|
52 |
return_all_scores=True
|
53 |
-
)
|
54 |
-
# Get sentiment scores for the input text
|
55 |
-
emotion_results = emotion_classifier(user_review)[0]
|
56 |
-
# Identify the emotion with the highest confidence score
|
57 |
-
dominant_emotion = max(emotion_results, key=lambda x: x['score'])
|
58 |
-
return dominant_emotion # Return the dominant emotion as a dictionary
|
59 |
|
|
|
|
|
|
|
|
|
|
|
60 |
##########################################
|
61 |
-
# Step 2: Response Generation
|
62 |
##########################################
|
63 |
-
def prompt_gen(user_review):
|
64 |
-
"""
|
65 |
-
Generate the text generation prompt based on the user's comment and detected emotion.
|
66 |
-
"""
|
67 |
-
# Determine the dominant emotion from the user's comment
|
68 |
-
dominant_emotion = analyze_dominant_emotion(user_review)
|
69 |
-
# Define prompt templates for seven emotions
|
70 |
-
emotion_strategies = {
|
71 |
-
"anger": {
|
72 |
-
"prompt": (
|
73 |
-
"Customer complaint: '{review}'\n\n"
|
74 |
-
"As a customer service representative, craft a professional response that:\n"
|
75 |
-
"- Begins with a sincere apology and acknowledgment.\n"
|
76 |
-
"- Clearly explains a solution process with concrete steps.\n"
|
77 |
-
"- Offers appropriate compensation or redemption.\n"
|
78 |
-
"- Keeps a humble, solution-focused tone (1-3 sentences).\n\n"
|
79 |
-
"Response:"
|
80 |
-
)
|
81 |
-
},
|
82 |
-
"disgust": {
|
83 |
-
"prompt": (
|
84 |
-
"Customer quality concern: '{review}'\n\n"
|
85 |
-
"As a customer service representative, craft a response that:\n"
|
86 |
-
"- Immediately acknowledges the product issue.\n"
|
87 |
-
"- Explains quality control measures being taken.\n"
|
88 |
-
"- Provides clear return/replacement instructions.\n"
|
89 |
-
"- Offers a goodwill gesture (1-3 sentences).\n\n"
|
90 |
-
"Response:"
|
91 |
-
)
|
92 |
-
},
|
93 |
-
"fear": {
|
94 |
-
"prompt": (
|
95 |
-
"Customer safety concern: '{review}'\n\n"
|
96 |
-
"As a customer service representative, craft a reassuring response that:\n"
|
97 |
-
"- Directly addresses safety worries.\n"
|
98 |
-
"- References relevant certifications or standards.\n"
|
99 |
-
"- Offers dedicated support contact.\n"
|
100 |
-
"- Provides a satisfaction guarantee (1-3 sentences).\n\n"
|
101 |
-
"Response:"
|
102 |
-
)
|
103 |
-
},
|
104 |
-
"joy": {
|
105 |
-
"prompt": (
|
106 |
-
"Customer review: '{review}'\n\n"
|
107 |
-
"As a customer service representative, craft a concise response that:\n"
|
108 |
-
"- Thanks the customer for their feedback.\n"
|
109 |
-
"- Acknowledges both positive and constructive points.\n"
|
110 |
-
"- Invites exploration of loyalty or referral programs (1-3 sentences).\n\n"
|
111 |
-
"Response:"
|
112 |
-
)
|
113 |
-
},
|
114 |
-
"neutral": {
|
115 |
-
"prompt": (
|
116 |
-
"Customer feedback: '{review}'\n\n"
|
117 |
-
"As a customer service representative, craft a balanced response that:\n"
|
118 |
-
"- Provides relevant product information.\n"
|
119 |
-
"- Highlights key service features.\n"
|
120 |
-
"- Politely requests detailed feedback.\n"
|
121 |
-
"- Maintains a professional tone (1-3 sentences).\n\n"
|
122 |
-
"Response:"
|
123 |
-
)
|
124 |
-
},
|
125 |
-
"sadness": {
|
126 |
-
"prompt": (
|
127 |
-
"Customer disappointment: '{review}'\n\n"
|
128 |
-
"As a customer service representative, craft an empathetic response that:\n"
|
129 |
-
"- Shows genuine understanding of the issue.\n"
|
130 |
-
"- Proposes a personalized recovery solution.\n"
|
131 |
-
"- Offers extended support options.\n"
|
132 |
-
"- Maintains a positive outlook (1-3 sentences).\n\n"
|
133 |
-
"Response:"
|
134 |
-
)
|
135 |
-
},
|
136 |
-
"surprise": {
|
137 |
-
"prompt": (
|
138 |
-
"Customer enthusiastic feedback: '{review}'\n\n"
|
139 |
-
"As a customer service representative, craft a response that:\n"
|
140 |
-
"- Matches the customer's positive energy.\n"
|
141 |
-
"- Highlights unexpected product benefits.\n"
|
142 |
-
"- Invites the customer to join community events.\n"
|
143 |
-
"- Maintains the brand's voice (1-3 sentences).\n\n"
|
144 |
-
"Response:"
|
145 |
-
)
|
146 |
-
}
|
147 |
-
} # End dictionary of prompt templates
|
148 |
-
# Select the template based on detected emotion; default to neutral if not found
|
149 |
-
template = emotion_strategies.get(dominant_emotion["label"].lower(), emotion_strategies["neutral"])["prompt"]
|
150 |
-
prompt = template.format(review=user_review) # Format the prompt with the user's comment
|
151 |
-
print(f"Generated prompt: {prompt}") # Debug: print the generated prompt using an f-string
|
152 |
-
return prompt # Return the text generation prompt
|
153 |
-
|
154 |
def response_gen(user_review):
|
155 |
"""
|
156 |
-
Generate a
|
157 |
"""
|
158 |
-
#
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
return response # Return the generated response
|
177 |
|
178 |
##########################################
|
@@ -180,42 +112,37 @@ def response_gen(user_review):
|
|
180 |
##########################################
|
181 |
def sound_gen(response):
|
182 |
"""
|
183 |
-
Convert the generated response to speech and
|
184 |
"""
|
185 |
-
# Load the
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
#
|
190 |
-
|
191 |
-
#
|
192 |
-
|
193 |
-
|
194 |
-
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
|
195 |
-
|
|
|
196 |
speech = vocoder(spectrogram) # Convert the spectrogram into an audio waveform
|
197 |
-
|
198 |
-
sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000)
|
199 |
-
#
|
200 |
-
st.audio("customer_service_response.wav", start_time=0)
|
201 |
|
202 |
##########################################
|
203 |
# Main Function
|
204 |
##########################################
|
205 |
def main():
|
206 |
"""
|
207 |
-
Main function to
|
208 |
-
It displays only the generated response and plays its audio without extra information.
|
209 |
"""
|
210 |
-
if text: #
|
211 |
-
response = response_gen(text) # Generate
|
212 |
-
st.
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
sound_gen(response) # Convert the full generated response to speech and embed the audio player
|
217 |
-
print(f"Final generated response: {response}") # Debug: print the final response using an f-string
|
218 |
-
|
219 |
-
# Execute the main function when the script is run
|
220 |
if __name__ == "__main__":
|
221 |
-
main()
|
|
|
2 |
# Step 0: Import required libraries
|
3 |
##########################################
|
4 |
import streamlit as st # For building the web application interface
|
5 |
+
from transformers import (
|
6 |
pipeline,
|
7 |
SpeechT5Processor,
|
8 |
SpeechT5ForTextToSpeech,
|
9 |
SpeechT5HifiGan,
|
10 |
AutoModelForCausalLM,
|
11 |
AutoTokenizer
|
12 |
+
) # For sentiment analysis, text-to-speech, and response generation
|
13 |
+
from datasets import load_dataset # For loading datasets (e.g., speaker embeddings)
|
14 |
import torch # For tensor operations
|
15 |
import soundfile as sf # For saving audio as .wav files
|
16 |
import sentencepiece # Required by SpeechT5Processor for tokenization
|
17 |
|
18 |
+
|
19 |
##########################################
|
20 |
# Streamlit application title and input
|
21 |
##########################################
|
22 |
+
# Display a deep blue title in a large, visually appealing font
|
23 |
st.markdown(
|
24 |
+
"<h1 style='text-align: center; color: #00008B; font-size: 50px;'>🚀 Just Comment</h1>",
|
25 |
unsafe_allow_html=True
|
26 |
+
) # Set deep blue title
|
27 |
|
28 |
# Display a gentle, warm subtitle below the title
|
29 |
st.markdown(
|
30 |
+
"<h3 style='text-align: center; color: #5D6D7E; font-style: italic;'>I'm listening to you, my friend~</h3>",
|
31 |
unsafe_allow_html=True
|
32 |
+
) # Set a friendly subtitle
|
33 |
|
34 |
+
# Add a text area for user input with placeholder and tooltip
|
35 |
text = st.text_area(
|
36 |
"Enter your comment",
|
37 |
placeholder="Type something here...",
|
38 |
height=100,
|
39 |
+
help="Write a comment you would like us to respond to!" # Provide tooltip
|
40 |
+
) # Create text input field
|
41 |
+
|
42 |
+
|
43 |
|
44 |
##########################################
|
45 |
# Step 1: Sentiment Analysis Function
|
46 |
##########################################
|
47 |
def analyze_dominant_emotion(user_review):
|
48 |
"""
|
49 |
+
Analyze the dominant emotion in the user's review using our fine-tuned sentiment analysis model.
|
50 |
"""
|
|
|
51 |
emotion_classifier = pipeline(
|
52 |
+
"text-classification",
|
53 |
+
model="Thea231/jhartmann_emotion_finetuning",
|
54 |
return_all_scores=True
|
55 |
+
) # Load our fine-tuned sentiment analysis model from Hugging Face
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
emotion_results = emotion_classifier(user_review)[0] # Perform sentiment analysis on the user input
|
58 |
+
dominant_emotion = max(emotion_results, key=lambda x: x['score']) # Extract the emotion with the highest confidence score
|
59 |
+
return dominant_emotion # Return the dominant emotion with its label and score
|
60 |
+
|
61 |
+
|
62 |
##########################################
|
63 |
+
# Step 2: Response Generation Function
|
64 |
##########################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
def response_gen(user_review):
|
66 |
"""
|
67 |
+
Generate a logical and complete response based on the sentiment of the user's review.
|
68 |
"""
|
69 |
+
dominant_emotion = analyze_dominant_emotion(user_review) # Identify the dominant emotion from the user's review
|
70 |
+
emotion_label = dominant_emotion['label'].lower() # Extract the emotion label and convert it to lowercase
|
71 |
+
|
72 |
+
# Define response templates tailored to each emotion
|
73 |
+
emotion_prompts = {
|
74 |
+
"anger": (
|
75 |
+
f"Customer complaint: '{user_review}'\n\n"
|
76 |
+
"As a customer service representative, write a response that:\n"
|
77 |
+
"- Sincerely apologizes for the issue\n"
|
78 |
+
"- Explains how the issue will be resolved\n"
|
79 |
+
"- Offers compensation where appropriate\n\n"
|
80 |
+
"Response:"
|
81 |
+
),
|
82 |
+
"joy": (
|
83 |
+
f"Customer review: '{user_review}'\n\n"
|
84 |
+
"As a customer service representative, write a positive response that:\n"
|
85 |
+
"- Thanks the customer for their feedback\n"
|
86 |
+
"- Acknowledges both positive and constructive comments\n"
|
87 |
+
"- Invites them to explore loyalty programs\n\n"
|
88 |
+
"Response:"
|
89 |
+
),
|
90 |
+
# Add other emotions (e.g., sadness, fear) as needed
|
91 |
+
}
|
92 |
+
|
93 |
+
# Select the appropriate prompt template based on the detected emotion
|
94 |
+
prompt = emotion_prompts.get(emotion_label, f"Neutral feedback: '{user_review}'\n\nProvide a professional response.")
|
95 |
+
|
96 |
+
# Load a small text generation model for generating concise, logical responses
|
97 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B") # Load a tokenizer for processing the prompt
|
98 |
+
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-0.5B") # Load the language model for generating text
|
99 |
+
|
100 |
+
inputs = tokenizer(prompt, return_tensors="pt") # Tokenize the input prompt
|
101 |
+
outputs = model.generate(**inputs, max_new_tokens=100) # Generate a response with a limit on the number of tokens
|
102 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Decode the generated response to text
|
103 |
+
|
104 |
+
# Ensure the response length falls within the desired range (50-200 words)
|
105 |
+
if len(response.split()) < 50 or len(response.split()) > 200:
|
106 |
+
response = f"Dear customer, thank you for your feedback regarding '{user_review}'. We appreciate your patience and will ensure improvements based on your valuable input." # Fallback response
|
107 |
+
|
108 |
return response # Return the generated response
|
109 |
|
110 |
##########################################
|
|
|
112 |
##########################################
|
113 |
def sound_gen(response):
|
114 |
"""
|
115 |
+
Convert the generated text response to a speech file and save it locally.
|
116 |
"""
|
117 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") # Load the processor for the TTS model
|
118 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") # Load the text-to-speech model
|
119 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") # Load the vocoder model for audio synthesis
|
120 |
+
|
121 |
+
# Load speaker embeddings for generating the audio (neutral female voice)
|
122 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") # Load speaker embeddings dataset
|
123 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # Select a sample embedding
|
124 |
+
|
125 |
+
inputs = processor(text=response, return_tensors="pt") # Convert the text response into processor-compatible format
|
126 |
+
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings) # Generate speech as a spectrogram
|
127 |
+
|
128 |
+
with torch.no_grad(): # Disable gradient computation for audio generation
|
129 |
speech = vocoder(spectrogram) # Convert the spectrogram into an audio waveform
|
130 |
+
|
131 |
+
sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000) # Save the audio as a .wav file
|
132 |
+
st.audio("customer_service_response.wav") # Allow users to play the generated audio in the app
|
|
|
133 |
|
134 |
##########################################
|
135 |
# Main Function
|
136 |
##########################################
|
137 |
def main():
|
138 |
"""
|
139 |
+
Main function to combine sentiment analysis, response generation, and text-to-speech functionality.
|
|
|
140 |
"""
|
141 |
+
if text: # Check if the user has entered a comment in the text area
|
142 |
+
response = response_gen(text) # Generate an automated response based on the input comment
|
143 |
+
st.write(f"Generated response: {response}") # Display the generated response in the app
|
144 |
+
sound_gen(response) # Convert the text response to speech and make it available for playback
|
145 |
+
|
146 |
+
# Run the main function when the script is executed
|
|
|
|
|
|
|
|
|
147 |
if __name__ == "__main__":
|
148 |
+
main()
|