Update badnet_m.py
Browse files- badnet_m.py +45 -30
badnet_m.py
CHANGED
@@ -1,36 +1,51 @@
|
|
1 |
from torch import nn
|
|
|
2 |
|
3 |
class BadNet(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
super().__init__()
|
7 |
-
self.conv1 = nn.Sequential(
|
8 |
-
nn.Conv2d(in_channels=input_channels, out_channels=16, kernel_size=5, stride=1),
|
9 |
-
nn.ReLU(),
|
10 |
-
nn.AvgPool2d(kernel_size=2, stride=2)
|
11 |
-
)
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
nn.Linear(in_features=fc1_input_features, out_features=512),
|
21 |
-
nn.ReLU()
|
22 |
-
)
|
23 |
-
self.fc2 = nn.Sequential(
|
24 |
-
nn.Linear(in_features=512, out_features=output_num),
|
25 |
-
nn.Softmax(dim=-1)
|
26 |
-
)
|
27 |
-
self.dropout = nn.Dropout(p=.5)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from torch import nn
|
2 |
+
import torchvision
|
3 |
|
4 |
class BadNet(nn.Module):
|
5 |
+
# def __init__(self, input_channel, output_label) -> None:
|
6 |
+
# 目前只假设cifar10
|
7 |
+
def __init__(self, output_label) -> None:
|
8 |
+
super(BadNet, self).__init__()
|
9 |
+
self.model = torchvision.models.resnet18(pretrained=True)
|
10 |
+
num_features = self.model.fc.out_features
|
11 |
+
self.fc = nn.Linear(in_features=num_features, out_features=output_label)
|
12 |
+
|
13 |
+
|
14 |
+
def forward(self, xs):
|
15 |
+
out = self.model(xs)
|
16 |
+
return self.fc(out)
|
17 |
|
18 |
+
# class BadNet(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# def __init__(self, input_channels, output_num):
|
21 |
+
# super().__init__()
|
22 |
+
# self.conv1 = nn.Sequential(
|
23 |
+
# nn.Conv2d(in_channels=input_channels, out_channels=16, kernel_size=5, stride=1),
|
24 |
+
# nn.ReLU(),
|
25 |
+
# nn.AvgPool2d(kernel_size=2, stride=2)
|
26 |
+
# )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
# self.conv2 = nn.Sequential(
|
29 |
+
# nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1),
|
30 |
+
# nn.ReLU(),
|
31 |
+
# nn.AvgPool2d(kernel_size=2, stride=2)
|
32 |
+
# )
|
33 |
+
# fc1_input_features = 800 if input_channels == 3 else 512
|
34 |
+
# self.fc1 = nn.Sequential(
|
35 |
+
# nn.Linear(in_features=fc1_input_features, out_features=512),
|
36 |
+
# nn.ReLU()
|
37 |
+
# )
|
38 |
+
# self.fc2 = nn.Sequential(
|
39 |
+
# nn.Linear(in_features=512, out_features=output_num),
|
40 |
+
# nn.Softmax(dim=-1)
|
41 |
+
# )
|
42 |
+
# self.dropout = nn.Dropout(p=.5)
|
43 |
+
|
44 |
+
# def forward(self, x):
|
45 |
+
# x = self.conv1(x)
|
46 |
+
# x = self.conv2(x)
|
47 |
+
# print(x.shape)
|
48 |
+
# x = x.view(x.size(0), -1)
|
49 |
+
# x = self.fc1(x)
|
50 |
+
# x = self.fc2(x)
|
51 |
+
# return x
|