Upload badnet_m.py
Browse files- badnet_m.py +36 -0
badnet_m.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
|
3 |
+
class BadNet(nn.Module):
|
4 |
+
|
5 |
+
def __init__(self, input_channels, output_num):
|
6 |
+
super().__init__()
|
7 |
+
self.conv1 = nn.Sequential(
|
8 |
+
nn.Conv2d(in_channels=input_channels, out_channels=16, kernel_size=5, stride=1),
|
9 |
+
nn.ReLU(),
|
10 |
+
nn.AvgPool2d(kernel_size=2, stride=2)
|
11 |
+
)
|
12 |
+
|
13 |
+
self.conv2 = nn.Sequential(
|
14 |
+
nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1),
|
15 |
+
nn.ReLU(),
|
16 |
+
nn.AvgPool2d(kernel_size=2, stride=2)
|
17 |
+
)
|
18 |
+
fc1_input_features = 800 if input_channels == 3 else 512
|
19 |
+
self.fc1 = nn.Sequential(
|
20 |
+
nn.Linear(in_features=fc1_input_features, out_features=512),
|
21 |
+
nn.ReLU()
|
22 |
+
)
|
23 |
+
self.fc2 = nn.Sequential(
|
24 |
+
nn.Linear(in_features=512, out_features=output_num),
|
25 |
+
nn.Softmax(dim=-1)
|
26 |
+
)
|
27 |
+
self.dropout = nn.Dropout(p=.5)
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
x = self.conv1(x)
|
31 |
+
x = self.conv2(x)
|
32 |
+
print(x.shape)
|
33 |
+
x = x.view(x.size(0), -1)
|
34 |
+
x = self.fc1(x)
|
35 |
+
x = self.fc2(x)
|
36 |
+
return x
|