Spaces:
Paused
Paused
import numpy as np | |
import cv2 | |
import trimesh | |
import argparse | |
from PIL import Image | |
from sklearn.cluster import KMeans | |
class SatelliteModelGenerator: | |
def __init__(self, building_height=0.05): | |
self.building_height = building_height | |
# Reference colors for segmentation (RGB) | |
self.shadow_colors = np.array([ | |
[31, 42, 76], | |
[58, 64, 92], | |
[15, 27, 56], | |
[21, 22, 50], | |
[76, 81, 99] | |
]) | |
self.road_colors = np.array([ | |
[187, 182, 175], | |
[138, 138, 138], | |
[142, 142, 129], | |
[202, 199, 189] | |
]) | |
self.water_colors = np.array([ | |
[167, 225, 217], | |
[67, 101, 97], | |
[53, 83, 84], | |
[47, 94, 100], | |
[73, 131, 135] | |
]) | |
# Convert and normalize reference colors to HSV | |
self.shadow_colors_hsv = cv2.cvtColor(self.shadow_colors.reshape(-1, 1, 3).astype(np.uint8), | |
cv2.COLOR_RGB2HSV).reshape(-1, 3).astype(float) | |
self.road_colors_hsv = cv2.cvtColor(self.road_colors.reshape(-1, 1, 3).astype(np.uint8), | |
cv2.COLOR_RGB2HSV).reshape(-1, 3).astype(float) | |
self.water_colors_hsv = cv2.cvtColor(self.water_colors.reshape(-1, 1, 3).astype(np.uint8), | |
cv2.COLOR_RGB2HSV).reshape(-1, 3).astype(float) | |
# Normalize HSV values | |
for colors_hsv in [self.shadow_colors_hsv, self.road_colors_hsv, self.water_colors_hsv]: | |
colors_hsv[:, 0] = colors_hsv[:, 0] * 2 | |
colors_hsv[:, 1:] = colors_hsv[:, 1:] / 255 | |
# Color tolerances from original segmenter | |
self.shadow_tolerance = {'hue': 15, 'sat': 0.15, 'val': 0.12} | |
self.road_tolerance = {'hue': 10, 'sat': 0.12, 'val': 0.15} | |
self.water_tolerance = {'hue': 20, 'sat': 0.15, 'val': 0.20} | |
# Output colors (BGR for OpenCV) | |
self.colors = { | |
'black': np.array([0, 0, 0]), # Shadows | |
'blue': np.array([255, 0, 0]), # Water | |
'green': np.array([0, 255, 0]), # Vegetation | |
'gray': np.array([128, 128, 128]), # Roads | |
'brown': np.array([0, 140, 255]), # Terrain | |
'white': np.array([255, 255, 255]) # Buildings | |
} | |
# Constants for height estimation | |
self.shadow_search_distance = 5 | |
self.min_area_for_clustering = 1000 | |
self.residential_height_factor = 0.6 | |
self.isolation_threshold = 0.6 | |
def color_distance_hsv(self, pixel_hsv, reference_hsv, tolerance): | |
"""Calculate if a pixel is within tolerance of reference color in HSV space""" | |
pixel_h = float(pixel_hsv[0]) * 2 | |
pixel_s = float(pixel_hsv[1]) / 255 | |
pixel_v = float(pixel_hsv[2]) / 255 | |
hue_diff = min(abs(pixel_h - reference_hsv[0]), | |
360 - abs(pixel_h - reference_hsv[0])) | |
sat_diff = abs(pixel_s - reference_hsv[1]) | |
val_diff = abs(pixel_v - reference_hsv[2]) | |
return (hue_diff <= tolerance['hue'] and | |
sat_diff <= tolerance['sat'] and | |
val_diff <= tolerance['val']) | |
def get_dominant_surrounding_color(self, output, y, x): | |
"""Determine dominant non-building color in neighborhood""" | |
height, width = output.shape[:2] | |
surroundings = [] | |
for dy in [-1, 0, 1]: | |
for dx in [-1, 0, 1]: | |
if dx == 0 and dy == 0: | |
continue | |
ny, nx = y + dy, x + dx | |
if 0 <= ny < height and 0 <= nx < width: | |
pixel_color = tuple(output[ny, nx].tolist()) | |
if not np.array_equal(output[ny, nx], self.colors['white']): | |
surroundings.append(pixel_color) | |
if not surroundings: | |
return None | |
surrounding_ratio = len(surroundings) / 8.0 | |
if surrounding_ratio >= self.isolation_threshold: | |
color_counts = {} | |
for color in surroundings: | |
color_str = str(color) | |
color_counts[color_str] = color_counts.get(color_str, 0) + 1 | |
most_common = max(color_counts.items(), key=lambda x: x[1])[0] | |
return np.array(eval(most_common)) | |
return None | |
def segment_image(self, img, window_size=5): | |
"""Segment image using improved color detection""" | |
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) | |
output = np.zeros_like(img) | |
pad = window_size // 2 | |
hsv_pad = np.pad(hsv, ((pad, pad), (pad, pad), (0, 0)), mode='edge') | |
height, width = img.shape[:2] | |
# First pass: initial segmentation | |
for y in range(height): | |
for x in range(width): | |
window = hsv_pad[y:y+window_size, x:x+window_size] | |
center_hsv = window[pad, pad] | |
is_shadow = any(self.color_distance_hsv(center_hsv, ref_hsv, self.shadow_tolerance) | |
for ref_hsv in self.shadow_colors_hsv) | |
is_road = any(self.color_distance_hsv(center_hsv, ref_hsv, self.road_tolerance) | |
for ref_hsv in self.road_colors_hsv) | |
is_water = any(self.color_distance_hsv(center_hsv, ref_hsv, self.water_tolerance) | |
for ref_hsv in self.water_colors_hsv) | |
if is_shadow: | |
output[y, x] = self.colors['black'] | |
elif is_water: | |
output[y, x] = self.colors['blue'] | |
elif is_road: | |
output[y, x] = self.colors['gray'] | |
else: | |
h, s, v = center_hsv | |
h = float(h) * 2 # Convert to 0-360 range | |
s = float(s) / 255 | |
v = float(v) / 255 | |
# Check for pinkish building tones (around red hue with specific saturation) | |
is_pinkish = ( | |
((h >= 340 or h <= 15) and # Red-pink hue range | |
0.2 <= s <= 0.6 and # Moderate saturation | |
0.3 <= v <= 0.7) # Moderate brightness | |
) | |
# Vegetation detection (green) | |
is_vegetation = ( | |
40 <= h <= 150 and | |
s >= 0.15 | |
) | |
# Soil/dirt detection (yellow-brown, avoiding pinkish tones) | |
is_soil = ( | |
15 <= h <= 45 and # Yellow-brown hue range | |
0.15 <= s <= 0.45 and # Lower saturation for dirt | |
not is_pinkish # Exclude pinkish tones | |
) | |
if is_pinkish: | |
output[y, x] = self.colors['white'] # Buildings | |
elif is_vegetation: | |
output[y, x] = self.colors['green'] # Vegetation | |
elif is_soil: | |
output[y, x] = self.colors['brown'] # Soil/dirt | |
else: | |
# Default to building for light-colored surfaces | |
output[y, x] = self.colors['white'] | |
# Second pass: handle isolated building pixels | |
final_output = output.copy() | |
for y in range(height): | |
for x in range(width): | |
if np.array_equal(output[y, x], self.colors['white']): | |
dominant_color = self.get_dominant_surrounding_color(output, y, x) | |
if dominant_color is not None: | |
final_output[y, x] = dominant_color | |
return final_output | |
def estimate_heights(self, img, segmented): | |
"""Estimate building heights""" | |
buildings_mask = np.all(segmented == self.colors['white'], axis=2) | |
shadows_mask = np.all(segmented == self.colors['black'], axis=2) | |
num_buildings, labels = cv2.connectedComponents(buildings_mask.astype(np.uint8)) | |
areas = np.bincount(labels.flatten())[1:] # Skip background | |
max_area = np.max(areas) if len(areas) > 0 else 1 | |
height_map = np.zeros_like(labels, dtype=np.float32) | |
for label in range(1, num_buildings): | |
building_mask = (labels == label) | |
if not np.any(building_mask): | |
continue | |
area = areas[label-1] | |
size_factor = 0.3 + 0.7 * (area / max_area) | |
dilated = cv2.dilate(building_mask.astype(np.uint8), np.ones((5,5), np.uint8)) | |
shadow_ratio = np.sum(dilated & shadows_mask) / np.sum(dilated) | |
shadow_factor = 0.2 + 0.8 * shadow_ratio | |
if area >= self.min_area_for_clustering: | |
building_intensities = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[building_mask] | |
kmeans = KMeans(n_clusters=2, random_state=42) | |
clusters = kmeans.fit_predict(building_intensities.reshape(-1, 1)) | |
cluster_means = [building_intensities[clusters == i].mean() for i in range(2)] | |
height_factor = self.residential_height_factor if cluster_means[0] > cluster_means[1] else 1.0 | |
else: | |
height_factor = 1.0 | |
final_height = size_factor * shadow_factor * height_factor | |
height_map[building_mask] = final_height | |
return height_map * 0.15 | |
def generate_mesh(self, height_map, texture_img, add_walls=True): | |
"""Generate 3D mesh""" | |
height, width = height_map.shape | |
x, z = np.meshgrid(np.arange(width), np.arange(height)) | |
vertices = np.stack([x, height_map * self.building_height, z], axis=-1) | |
vertices = vertices.reshape(-1, 3) | |
scale = max(width, height) | |
vertices[:, 0] = vertices[:, 0] / scale * 2 - (width / scale) | |
vertices[:, 2] = vertices[:, 2] / scale * 2 - (height / scale) | |
vertices[:, 1] = vertices[:, 1] * 2 - 1 | |
i, j = np.meshgrid(np.arange(height-1), np.arange(width-1), indexing='ij') | |
v0 = (i * width + j).flatten() | |
v1 = v0 + 1 | |
v2 = ((i + 1) * width + j).flatten() | |
v3 = v2 + 1 | |
faces = np.vstack(( | |
np.column_stack((v0, v2, v1)), | |
np.column_stack((v1, v2, v3)) | |
)) | |
uvs = np.zeros((vertices.shape[0], 2)) | |
uvs[:, 0] = x.flatten() / (width - 1) | |
uvs[:, 1] = 1 - (z.flatten() / (height - 1)) | |
if len(texture_img.shape) == 3: | |
if texture_img.shape[2] == 4: | |
texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGRA2RGB) | |
else: | |
texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGR2RGB) | |
mesh = trimesh.Trimesh( | |
vertices=vertices, | |
faces=faces, | |
visual=trimesh.visual.TextureVisuals( | |
uv=uvs, | |
image=Image.fromarray(texture_img) | |
) | |
) | |
if add_walls: | |
mesh = self._add_walls(mesh, height_map) | |
return mesh | |
def _add_walls(self, mesh, height_map): | |
"""Add vertical walls at building edges""" | |
edges = cv2.Canny(height_map.astype(np.uint8) * 255, 100, 200) | |
height, width = height_map.shape | |
scale = max(width, height) | |
edge_coords = np.column_stack(np.where(edges > 0)) | |
if len(edge_coords) == 0: | |
return mesh | |
valid_mask = (edge_coords[:, 0] < height - 1) & (edge_coords[:, 1] < width - 1) | |
edge_coords = edge_coords[valid_mask] | |
if len(edge_coords) == 0: | |
return mesh | |
y, x = edge_coords.T | |
heights = height_map[y, x] | |
top_front = np.column_stack([x, heights * self.building_height, y]) | |
top_back = np.column_stack([x + 1, heights * self.building_height, y]) | |
bottom_front = np.column_stack([x, np.zeros_like(heights), y]) | |
bottom_back = np.column_stack([x + 1, np.zeros_like(heights), y]) | |
for vertices in [top_front, top_back, bottom_front, bottom_back]: | |
vertices[:, 0] = vertices[:, 0] / scale * 2 - (width / scale) | |
vertices[:, 2] = vertices[:, 2] / scale * 2 - (height / scale) | |
vertices[:, 1] = vertices[:, 1] * 2 - 1 | |
new_vertices = np.vstack([top_front, top_back, bottom_front, bottom_back]) | |
vertex_count = len(edge_coords) | |
indices = np.arange(4 * vertex_count).reshape(-1, 4) | |
new_faces = np.vstack([ | |
np.column_stack([indices[:, 0], indices[:, 2], indices[:, 1]]), | |
np.column_stack([indices[:, 1], indices[:, 2], indices[:, 3]]) | |
]) | |
base_vertex_count = len(mesh.vertices) | |
mesh.vertices = np.vstack((mesh.vertices, new_vertices)) | |
mesh.faces = np.vstack((mesh.faces, new_faces + base_vertex_count)) | |
return mesh | |
def main(): | |
parser = argparse.ArgumentParser(description='Generate 3D mesh from satellite image') | |
parser.add_argument('input_image', help='Path to satellite image') | |
parser.add_argument('output_mesh', help='Path for output GLB file') | |
parser.add_argument('--segmented_output', help='Optional path to save segmented image') | |
parser.add_argument('--height', type=float, default=0.09, help='Height of buildings (default: 0.09)') | |
parser.add_argument('--no_walls', action='store_true', help='Skip generating vertical walls') | |
parser.add_argument('--window_size', type=int, default=5, help='Window size for segmentation analysis') | |
args = parser.parse_args() | |
# Load image | |
img = cv2.imread(args.input_image) | |
if img is None: | |
raise ValueError(f"Could not read image at {args.input_image}") | |
generator = SatelliteModelGenerator(building_height=args.height) | |
# Process image | |
print("Segmenting image...") | |
segmented_img = generator.segment_image(img, args.window_size) | |
print("Estimating heights...") | |
height_map = generator.estimate_heights(img, segmented_img) | |
# Save segmented image if requested | |
if args.segmented_output: | |
cv2.imwrite(args.segmented_output, segmented_img) | |
print(f"Segmented image saved to {args.segmented_output}") | |
# Generate and save mesh | |
print("Generating mesh...") | |
mesh = generator.generate_mesh(height_map, img, add_walls=not args.no_walls) | |
mesh.export(args.output_mesh) | |
print(f"Mesh exported to {args.output_mesh}") | |
if __name__ == "__main__": | |
main() |