Spaces:
Paused
Paused
File size: 15,066 Bytes
c8a43f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import numpy as np
import cv2
import trimesh
import argparse
from PIL import Image
from sklearn.cluster import KMeans
class SatelliteModelGenerator:
def __init__(self, building_height=0.05):
self.building_height = building_height
# Reference colors for segmentation (RGB)
self.shadow_colors = np.array([
[31, 42, 76],
[58, 64, 92],
[15, 27, 56],
[21, 22, 50],
[76, 81, 99]
])
self.road_colors = np.array([
[187, 182, 175],
[138, 138, 138],
[142, 142, 129],
[202, 199, 189]
])
self.water_colors = np.array([
[167, 225, 217],
[67, 101, 97],
[53, 83, 84],
[47, 94, 100],
[73, 131, 135]
])
# Convert and normalize reference colors to HSV
self.shadow_colors_hsv = cv2.cvtColor(self.shadow_colors.reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV).reshape(-1, 3).astype(float)
self.road_colors_hsv = cv2.cvtColor(self.road_colors.reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV).reshape(-1, 3).astype(float)
self.water_colors_hsv = cv2.cvtColor(self.water_colors.reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV).reshape(-1, 3).astype(float)
# Normalize HSV values
for colors_hsv in [self.shadow_colors_hsv, self.road_colors_hsv, self.water_colors_hsv]:
colors_hsv[:, 0] = colors_hsv[:, 0] * 2
colors_hsv[:, 1:] = colors_hsv[:, 1:] / 255
# Color tolerances from original segmenter
self.shadow_tolerance = {'hue': 15, 'sat': 0.15, 'val': 0.12}
self.road_tolerance = {'hue': 10, 'sat': 0.12, 'val': 0.15}
self.water_tolerance = {'hue': 20, 'sat': 0.15, 'val': 0.20}
# Output colors (BGR for OpenCV)
self.colors = {
'black': np.array([0, 0, 0]), # Shadows
'blue': np.array([255, 0, 0]), # Water
'green': np.array([0, 255, 0]), # Vegetation
'gray': np.array([128, 128, 128]), # Roads
'brown': np.array([0, 140, 255]), # Terrain
'white': np.array([255, 255, 255]) # Buildings
}
# Constants for height estimation
self.shadow_search_distance = 5
self.min_area_for_clustering = 1000
self.residential_height_factor = 0.6
self.isolation_threshold = 0.6
def color_distance_hsv(self, pixel_hsv, reference_hsv, tolerance):
"""Calculate if a pixel is within tolerance of reference color in HSV space"""
pixel_h = float(pixel_hsv[0]) * 2
pixel_s = float(pixel_hsv[1]) / 255
pixel_v = float(pixel_hsv[2]) / 255
hue_diff = min(abs(pixel_h - reference_hsv[0]),
360 - abs(pixel_h - reference_hsv[0]))
sat_diff = abs(pixel_s - reference_hsv[1])
val_diff = abs(pixel_v - reference_hsv[2])
return (hue_diff <= tolerance['hue'] and
sat_diff <= tolerance['sat'] and
val_diff <= tolerance['val'])
def get_dominant_surrounding_color(self, output, y, x):
"""Determine dominant non-building color in neighborhood"""
height, width = output.shape[:2]
surroundings = []
for dy in [-1, 0, 1]:
for dx in [-1, 0, 1]:
if dx == 0 and dy == 0:
continue
ny, nx = y + dy, x + dx
if 0 <= ny < height and 0 <= nx < width:
pixel_color = tuple(output[ny, nx].tolist())
if not np.array_equal(output[ny, nx], self.colors['white']):
surroundings.append(pixel_color)
if not surroundings:
return None
surrounding_ratio = len(surroundings) / 8.0
if surrounding_ratio >= self.isolation_threshold:
color_counts = {}
for color in surroundings:
color_str = str(color)
color_counts[color_str] = color_counts.get(color_str, 0) + 1
most_common = max(color_counts.items(), key=lambda x: x[1])[0]
return np.array(eval(most_common))
return None
def segment_image(self, img, window_size=5):
"""Segment image using improved color detection"""
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
output = np.zeros_like(img)
pad = window_size // 2
hsv_pad = np.pad(hsv, ((pad, pad), (pad, pad), (0, 0)), mode='edge')
height, width = img.shape[:2]
# First pass: initial segmentation
for y in range(height):
for x in range(width):
window = hsv_pad[y:y+window_size, x:x+window_size]
center_hsv = window[pad, pad]
is_shadow = any(self.color_distance_hsv(center_hsv, ref_hsv, self.shadow_tolerance)
for ref_hsv in self.shadow_colors_hsv)
is_road = any(self.color_distance_hsv(center_hsv, ref_hsv, self.road_tolerance)
for ref_hsv in self.road_colors_hsv)
is_water = any(self.color_distance_hsv(center_hsv, ref_hsv, self.water_tolerance)
for ref_hsv in self.water_colors_hsv)
if is_shadow:
output[y, x] = self.colors['black']
elif is_water:
output[y, x] = self.colors['blue']
elif is_road:
output[y, x] = self.colors['gray']
else:
h, s, v = center_hsv
h = float(h) * 2 # Convert to 0-360 range
s = float(s) / 255
v = float(v) / 255
# Check for pinkish building tones (around red hue with specific saturation)
is_pinkish = (
((h >= 340 or h <= 15) and # Red-pink hue range
0.2 <= s <= 0.6 and # Moderate saturation
0.3 <= v <= 0.7) # Moderate brightness
)
# Vegetation detection (green)
is_vegetation = (
40 <= h <= 150 and
s >= 0.15
)
# Soil/dirt detection (yellow-brown, avoiding pinkish tones)
is_soil = (
15 <= h <= 45 and # Yellow-brown hue range
0.15 <= s <= 0.45 and # Lower saturation for dirt
not is_pinkish # Exclude pinkish tones
)
if is_pinkish:
output[y, x] = self.colors['white'] # Buildings
elif is_vegetation:
output[y, x] = self.colors['green'] # Vegetation
elif is_soil:
output[y, x] = self.colors['brown'] # Soil/dirt
else:
# Default to building for light-colored surfaces
output[y, x] = self.colors['white']
# Second pass: handle isolated building pixels
final_output = output.copy()
for y in range(height):
for x in range(width):
if np.array_equal(output[y, x], self.colors['white']):
dominant_color = self.get_dominant_surrounding_color(output, y, x)
if dominant_color is not None:
final_output[y, x] = dominant_color
return final_output
def estimate_heights(self, img, segmented):
"""Estimate building heights"""
buildings_mask = np.all(segmented == self.colors['white'], axis=2)
shadows_mask = np.all(segmented == self.colors['black'], axis=2)
num_buildings, labels = cv2.connectedComponents(buildings_mask.astype(np.uint8))
areas = np.bincount(labels.flatten())[1:] # Skip background
max_area = np.max(areas) if len(areas) > 0 else 1
height_map = np.zeros_like(labels, dtype=np.float32)
for label in range(1, num_buildings):
building_mask = (labels == label)
if not np.any(building_mask):
continue
area = areas[label-1]
size_factor = 0.3 + 0.7 * (area / max_area)
dilated = cv2.dilate(building_mask.astype(np.uint8), np.ones((5,5), np.uint8))
shadow_ratio = np.sum(dilated & shadows_mask) / np.sum(dilated)
shadow_factor = 0.2 + 0.8 * shadow_ratio
if area >= self.min_area_for_clustering:
building_intensities = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[building_mask]
kmeans = KMeans(n_clusters=2, random_state=42)
clusters = kmeans.fit_predict(building_intensities.reshape(-1, 1))
cluster_means = [building_intensities[clusters == i].mean() for i in range(2)]
height_factor = self.residential_height_factor if cluster_means[0] > cluster_means[1] else 1.0
else:
height_factor = 1.0
final_height = size_factor * shadow_factor * height_factor
height_map[building_mask] = final_height
return height_map * 0.15
def generate_mesh(self, height_map, texture_img, add_walls=True):
"""Generate 3D mesh"""
height, width = height_map.shape
x, z = np.meshgrid(np.arange(width), np.arange(height))
vertices = np.stack([x, height_map * self.building_height, z], axis=-1)
vertices = vertices.reshape(-1, 3)
scale = max(width, height)
vertices[:, 0] = vertices[:, 0] / scale * 2 - (width / scale)
vertices[:, 2] = vertices[:, 2] / scale * 2 - (height / scale)
vertices[:, 1] = vertices[:, 1] * 2 - 1
i, j = np.meshgrid(np.arange(height-1), np.arange(width-1), indexing='ij')
v0 = (i * width + j).flatten()
v1 = v0 + 1
v2 = ((i + 1) * width + j).flatten()
v3 = v2 + 1
faces = np.vstack((
np.column_stack((v0, v2, v1)),
np.column_stack((v1, v2, v3))
))
uvs = np.zeros((vertices.shape[0], 2))
uvs[:, 0] = x.flatten() / (width - 1)
uvs[:, 1] = 1 - (z.flatten() / (height - 1))
if len(texture_img.shape) == 3:
if texture_img.shape[2] == 4:
texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGRA2RGB)
else:
texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGR2RGB)
mesh = trimesh.Trimesh(
vertices=vertices,
faces=faces,
visual=trimesh.visual.TextureVisuals(
uv=uvs,
image=Image.fromarray(texture_img)
)
)
if add_walls:
mesh = self._add_walls(mesh, height_map)
return mesh
def _add_walls(self, mesh, height_map):
"""Add vertical walls at building edges"""
edges = cv2.Canny(height_map.astype(np.uint8) * 255, 100, 200)
height, width = height_map.shape
scale = max(width, height)
edge_coords = np.column_stack(np.where(edges > 0))
if len(edge_coords) == 0:
return mesh
valid_mask = (edge_coords[:, 0] < height - 1) & (edge_coords[:, 1] < width - 1)
edge_coords = edge_coords[valid_mask]
if len(edge_coords) == 0:
return mesh
y, x = edge_coords.T
heights = height_map[y, x]
top_front = np.column_stack([x, heights * self.building_height, y])
top_back = np.column_stack([x + 1, heights * self.building_height, y])
bottom_front = np.column_stack([x, np.zeros_like(heights), y])
bottom_back = np.column_stack([x + 1, np.zeros_like(heights), y])
for vertices in [top_front, top_back, bottom_front, bottom_back]:
vertices[:, 0] = vertices[:, 0] / scale * 2 - (width / scale)
vertices[:, 2] = vertices[:, 2] / scale * 2 - (height / scale)
vertices[:, 1] = vertices[:, 1] * 2 - 1
new_vertices = np.vstack([top_front, top_back, bottom_front, bottom_back])
vertex_count = len(edge_coords)
indices = np.arange(4 * vertex_count).reshape(-1, 4)
new_faces = np.vstack([
np.column_stack([indices[:, 0], indices[:, 2], indices[:, 1]]),
np.column_stack([indices[:, 1], indices[:, 2], indices[:, 3]])
])
base_vertex_count = len(mesh.vertices)
mesh.vertices = np.vstack((mesh.vertices, new_vertices))
mesh.faces = np.vstack((mesh.faces, new_faces + base_vertex_count))
return mesh
def main():
parser = argparse.ArgumentParser(description='Generate 3D mesh from satellite image')
parser.add_argument('input_image', help='Path to satellite image')
parser.add_argument('output_mesh', help='Path for output GLB file')
parser.add_argument('--segmented_output', help='Optional path to save segmented image')
parser.add_argument('--height', type=float, default=0.09, help='Height of buildings (default: 0.09)')
parser.add_argument('--no_walls', action='store_true', help='Skip generating vertical walls')
parser.add_argument('--window_size', type=int, default=5, help='Window size for segmentation analysis')
args = parser.parse_args()
# Load image
img = cv2.imread(args.input_image)
if img is None:
raise ValueError(f"Could not read image at {args.input_image}")
generator = SatelliteModelGenerator(building_height=args.height)
# Process image
print("Segmenting image...")
segmented_img = generator.segment_image(img, args.window_size)
print("Estimating heights...")
height_map = generator.estimate_heights(img, segmented_img)
# Save segmented image if requested
if args.segmented_output:
cv2.imwrite(args.segmented_output, segmented_img)
print(f"Segmented image saved to {args.segmented_output}")
# Generate and save mesh
print("Generating mesh...")
mesh = generator.generate_mesh(height_map, img, add_walls=not args.no_walls)
mesh.export(args.output_mesh)
print(f"Mesh exported to {args.output_mesh}")
if __name__ == "__main__":
main() |