File size: 15,066 Bytes
c8a43f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import numpy as np
import cv2
import trimesh
import argparse
from PIL import Image
from sklearn.cluster import KMeans

class SatelliteModelGenerator:
    def __init__(self, building_height=0.05):
        self.building_height = building_height
        
        # Reference colors for segmentation (RGB)
        self.shadow_colors = np.array([
            [31, 42, 76],
            [58, 64, 92],
            [15, 27, 56],
            [21, 22, 50],
            [76, 81, 99]
        ])
        
        self.road_colors = np.array([
            [187, 182, 175],
            [138, 138, 138], 
            [142, 142, 129],
            [202, 199, 189]
        ])
        
        self.water_colors = np.array([
            [167, 225, 217],
            [67, 101, 97],
            [53, 83, 84],
            [47, 94, 100],
            [73, 131, 135]
        ])
        
        # Convert and normalize reference colors to HSV
        self.shadow_colors_hsv = cv2.cvtColor(self.shadow_colors.reshape(-1, 1, 3).astype(np.uint8), 
                                            cv2.COLOR_RGB2HSV).reshape(-1, 3).astype(float)
        self.road_colors_hsv = cv2.cvtColor(self.road_colors.reshape(-1, 1, 3).astype(np.uint8), 
                                          cv2.COLOR_RGB2HSV).reshape(-1, 3).astype(float)
        self.water_colors_hsv = cv2.cvtColor(self.water_colors.reshape(-1, 1, 3).astype(np.uint8), 
                                           cv2.COLOR_RGB2HSV).reshape(-1, 3).astype(float)
        
        # Normalize HSV values
        for colors_hsv in [self.shadow_colors_hsv, self.road_colors_hsv, self.water_colors_hsv]:
            colors_hsv[:, 0] = colors_hsv[:, 0] * 2
            colors_hsv[:, 1:] = colors_hsv[:, 1:] / 255
        
        # Color tolerances from original segmenter
        self.shadow_tolerance = {'hue': 15, 'sat': 0.15, 'val': 0.12}
        self.road_tolerance = {'hue': 10, 'sat': 0.12, 'val': 0.15}
        self.water_tolerance = {'hue': 20, 'sat': 0.15, 'val': 0.20}
        
        # Output colors (BGR for OpenCV)
        self.colors = {
            'black': np.array([0, 0, 0]),      # Shadows
            'blue': np.array([255, 0, 0]),     # Water
            'green': np.array([0, 255, 0]),    # Vegetation
            'gray': np.array([128, 128, 128]), # Roads
            'brown': np.array([0, 140, 255]),  # Terrain
            'white': np.array([255, 255, 255]) # Buildings
        }
        
        # Constants for height estimation
        self.shadow_search_distance = 5
        self.min_area_for_clustering = 1000
        self.residential_height_factor = 0.6
        self.isolation_threshold = 0.6

    def color_distance_hsv(self, pixel_hsv, reference_hsv, tolerance):
        """Calculate if a pixel is within tolerance of reference color in HSV space"""
        pixel_h = float(pixel_hsv[0]) * 2
        pixel_s = float(pixel_hsv[1]) / 255
        pixel_v = float(pixel_hsv[2]) / 255
        
        hue_diff = min(abs(pixel_h - reference_hsv[0]),
                      360 - abs(pixel_h - reference_hsv[0]))
        sat_diff = abs(pixel_s - reference_hsv[1])
        val_diff = abs(pixel_v - reference_hsv[2])
        
        return (hue_diff <= tolerance['hue'] and
                sat_diff <= tolerance['sat'] and
                val_diff <= tolerance['val'])

    def get_dominant_surrounding_color(self, output, y, x):
        """Determine dominant non-building color in neighborhood"""
        height, width = output.shape[:2]
        surroundings = []
        
        for dy in [-1, 0, 1]:
            for dx in [-1, 0, 1]:
                if dx == 0 and dy == 0:
                    continue
                
                ny, nx = y + dy, x + dx
                if 0 <= ny < height and 0 <= nx < width:
                    pixel_color = tuple(output[ny, nx].tolist())
                    if not np.array_equal(output[ny, nx], self.colors['white']):
                        surroundings.append(pixel_color)
        
        if not surroundings:
            return None
        
        surrounding_ratio = len(surroundings) / 8.0
        
        if surrounding_ratio >= self.isolation_threshold:
            color_counts = {}
            for color in surroundings:
                color_str = str(color)
                color_counts[color_str] = color_counts.get(color_str, 0) + 1
            
            most_common = max(color_counts.items(), key=lambda x: x[1])[0]
            return np.array(eval(most_common))
        
        return None

    def segment_image(self, img, window_size=5):
        """Segment image using improved color detection"""
        hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
        output = np.zeros_like(img)
        
        pad = window_size // 2
        hsv_pad = np.pad(hsv, ((pad, pad), (pad, pad), (0, 0)), mode='edge')
        
        height, width = img.shape[:2]
        
        # First pass: initial segmentation
        for y in range(height):
            for x in range(width):
                window = hsv_pad[y:y+window_size, x:x+window_size]
                center_hsv = window[pad, pad]
                
                is_shadow = any(self.color_distance_hsv(center_hsv, ref_hsv, self.shadow_tolerance)
                              for ref_hsv in self.shadow_colors_hsv)
                
                is_road = any(self.color_distance_hsv(center_hsv, ref_hsv, self.road_tolerance)
                            for ref_hsv in self.road_colors_hsv)
                
                is_water = any(self.color_distance_hsv(center_hsv, ref_hsv, self.water_tolerance)
                             for ref_hsv in self.water_colors_hsv)
                
                if is_shadow:
                    output[y, x] = self.colors['black']
                elif is_water:
                    output[y, x] = self.colors['blue']
                elif is_road:
                    output[y, x] = self.colors['gray']
                else:
                    h, s, v = center_hsv
                    h = float(h) * 2  # Convert to 0-360 range
                    s = float(s) / 255
                    v = float(v) / 255
                    
                    # Check for pinkish building tones (around red hue with specific saturation)
                    is_pinkish = (
                        ((h >= 340 or h <= 15) and  # Red-pink hue range
                         0.2 <= s <= 0.6 and        # Moderate saturation
                         0.3 <= v <= 0.7)           # Moderate brightness
                    )
                    
                    # Vegetation detection (green)
                    is_vegetation = (
                        40 <= h <= 150 and 
                        s >= 0.15
                    )
                    
                    # Soil/dirt detection (yellow-brown, avoiding pinkish tones)
                    is_soil = (
                        15 <= h <= 45 and           # Yellow-brown hue range
                        0.15 <= s <= 0.45 and       # Lower saturation for dirt
                        not is_pinkish              # Exclude pinkish tones
                    )
                    
                    if is_pinkish:
                        output[y, x] = self.colors['white']  # Buildings
                    elif is_vegetation:
                        output[y, x] = self.colors['green']  # Vegetation
                    elif is_soil:
                        output[y, x] = self.colors['brown']  # Soil/dirt
                    else:
                        # Default to building for light-colored surfaces
                        output[y, x] = self.colors['white']
        
        # Second pass: handle isolated building pixels
        final_output = output.copy()
        for y in range(height):
            for x in range(width):
                if np.array_equal(output[y, x], self.colors['white']):
                    dominant_color = self.get_dominant_surrounding_color(output, y, x)
                    if dominant_color is not None:
                        final_output[y, x] = dominant_color
        
        return final_output

    def estimate_heights(self, img, segmented):
        """Estimate building heights"""
        buildings_mask = np.all(segmented == self.colors['white'], axis=2)
        shadows_mask = np.all(segmented == self.colors['black'], axis=2)
        
        num_buildings, labels = cv2.connectedComponents(buildings_mask.astype(np.uint8))
        
        areas = np.bincount(labels.flatten())[1:]  # Skip background
        max_area = np.max(areas) if len(areas) > 0 else 1
        
        height_map = np.zeros_like(labels, dtype=np.float32)
        
        for label in range(1, num_buildings):
            building_mask = (labels == label)
            if not np.any(building_mask):
                continue
            
            area = areas[label-1]
            size_factor = 0.3 + 0.7 * (area / max_area)
            
            dilated = cv2.dilate(building_mask.astype(np.uint8), np.ones((5,5), np.uint8))
            shadow_ratio = np.sum(dilated & shadows_mask) / np.sum(dilated)
            shadow_factor = 0.2 + 0.8 * shadow_ratio
            
            if area >= self.min_area_for_clustering:
                building_intensities = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[building_mask]
                kmeans = KMeans(n_clusters=2, random_state=42)
                clusters = kmeans.fit_predict(building_intensities.reshape(-1, 1))
                cluster_means = [building_intensities[clusters == i].mean() for i in range(2)]
                height_factor = self.residential_height_factor if cluster_means[0] > cluster_means[1] else 1.0
            else:
                height_factor = 1.0
            
            final_height = size_factor * shadow_factor * height_factor
            height_map[building_mask] = final_height
        
        return height_map * 0.15

    def generate_mesh(self, height_map, texture_img, add_walls=True):
        """Generate 3D mesh"""
        height, width = height_map.shape
        
        x, z = np.meshgrid(np.arange(width), np.arange(height))
        vertices = np.stack([x, height_map * self.building_height, z], axis=-1)
        vertices = vertices.reshape(-1, 3)
        
        scale = max(width, height)
        vertices[:, 0] = vertices[:, 0] / scale * 2 - (width / scale)
        vertices[:, 2] = vertices[:, 2] / scale * 2 - (height / scale)
        vertices[:, 1] = vertices[:, 1] * 2 - 1
        
        i, j = np.meshgrid(np.arange(height-1), np.arange(width-1), indexing='ij')
        v0 = (i * width + j).flatten()
        v1 = v0 + 1
        v2 = ((i + 1) * width + j).flatten()
        v3 = v2 + 1
        
        faces = np.vstack((
            np.column_stack((v0, v2, v1)),
            np.column_stack((v1, v2, v3))
        ))
        
        uvs = np.zeros((vertices.shape[0], 2))
        uvs[:, 0] = x.flatten() / (width - 1)
        uvs[:, 1] = 1 - (z.flatten() / (height - 1))
        
        if len(texture_img.shape) == 3:
            if texture_img.shape[2] == 4:
                texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGRA2RGB)
            else:
                texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGR2RGB)
        
        mesh = trimesh.Trimesh(
            vertices=vertices,
            faces=faces,
            visual=trimesh.visual.TextureVisuals(
                uv=uvs,
                image=Image.fromarray(texture_img)
            )
        )
        
        if add_walls:
            mesh = self._add_walls(mesh, height_map)
        
        return mesh

    def _add_walls(self, mesh, height_map):
        """Add vertical walls at building edges"""
        edges = cv2.Canny(height_map.astype(np.uint8) * 255, 100, 200)
        height, width = height_map.shape
        scale = max(width, height)
        
        edge_coords = np.column_stack(np.where(edges > 0))
        if len(edge_coords) == 0:
            return mesh
        
        valid_mask = (edge_coords[:, 0] < height - 1) & (edge_coords[:, 1] < width - 1)
        edge_coords = edge_coords[valid_mask]
        
        if len(edge_coords) == 0:
            return mesh
        
        y, x = edge_coords.T
        heights = height_map[y, x]
        
        top_front = np.column_stack([x, heights * self.building_height, y])
        top_back = np.column_stack([x + 1, heights * self.building_height, y])
        bottom_front = np.column_stack([x, np.zeros_like(heights), y])
        bottom_back = np.column_stack([x + 1, np.zeros_like(heights), y])
        
        for vertices in [top_front, top_back, bottom_front, bottom_back]:
            vertices[:, 0] = vertices[:, 0] / scale * 2 - (width / scale)
            vertices[:, 2] = vertices[:, 2] / scale * 2 - (height / scale)
            vertices[:, 1] = vertices[:, 1] * 2 - 1
        
        new_vertices = np.vstack([top_front, top_back, bottom_front, bottom_back])
        vertex_count = len(edge_coords)
        
        indices = np.arange(4 * vertex_count).reshape(-1, 4)
        new_faces = np.vstack([
            np.column_stack([indices[:, 0], indices[:, 2], indices[:, 1]]),
            np.column_stack([indices[:, 1], indices[:, 2], indices[:, 3]])
        ])
        
        base_vertex_count = len(mesh.vertices)
        mesh.vertices = np.vstack((mesh.vertices, new_vertices))
        mesh.faces = np.vstack((mesh.faces, new_faces + base_vertex_count))
        
        return mesh

def main():
    parser = argparse.ArgumentParser(description='Generate 3D mesh from satellite image')
    parser.add_argument('input_image', help='Path to satellite image')
    parser.add_argument('output_mesh', help='Path for output GLB file')
    parser.add_argument('--segmented_output', help='Optional path to save segmented image')
    parser.add_argument('--height', type=float, default=0.09, help='Height of buildings (default: 0.09)')
    parser.add_argument('--no_walls', action='store_true', help='Skip generating vertical walls')
    parser.add_argument('--window_size', type=int, default=5, help='Window size for segmentation analysis')
    
    args = parser.parse_args()
    
    # Load image
    img = cv2.imread(args.input_image)
    if img is None:
        raise ValueError(f"Could not read image at {args.input_image}")
    
    generator = SatelliteModelGenerator(building_height=args.height)
    
    # Process image
    print("Segmenting image...")
    segmented_img = generator.segment_image(img, args.window_size)
    
    print("Estimating heights...")
    height_map = generator.estimate_heights(img, segmented_img)
    
    # Save segmented image if requested
    if args.segmented_output:
        cv2.imwrite(args.segmented_output, segmented_img)
        print(f"Segmented image saved to {args.segmented_output}")
    
    # Generate and save mesh
    print("Generating mesh...")
    mesh = generator.generate_mesh(height_map, img, add_walls=not args.no_walls)
    mesh.export(args.output_mesh)
    print(f"Mesh exported to {args.output_mesh}")

if __name__ == "__main__":
    main()