text-to-map / app.py
jbilcke-hf's picture
jbilcke-hf HF Staff
Update app.py
426ec64 verified
raw
history blame
11.9 kB
import os
import tempfile
import torch
import numpy as np
import gradio as gr
from PIL import Image
import cv2
from diffusers import DiffusionPipeline
import cupy as cp
from cupyx.scipy.ndimage import label as cp_label
from cupyx.scipy.ndimage import binary_dilation
from sklearn.cluster import DBSCAN
import trimesh
class GPUSatelliteModelGenerator:
def __init__(self, building_height=0.05):
self.building_height = building_height
# Move color arrays to GPU using cupy
self.shadow_colors = cp.array([
[31, 42, 76],
[58, 64, 92],
[15, 27, 56],
[21, 22, 50],
[76, 81, 99]
])
self.road_colors = cp.array([
[187, 182, 175],
[138, 138, 138],
[142, 142, 129],
[202, 199, 189]
])
self.water_colors = cp.array([
[167, 225, 217],
[67, 101, 97],
[53, 83, 84],
[47, 94, 100],
[73, 131, 135]
])
# Convert reference colors to HSV on GPU
self.shadow_colors_hsv = cp.asarray(cv2.cvtColor(
self.shadow_colors.get().reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV
).reshape(-1, 3))
self.road_colors_hsv = cp.asarray(cv2.cvtColor(
self.road_colors.get().reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV
).reshape(-1, 3))
self.water_colors_hsv = cp.asarray(cv2.cvtColor(
self.water_colors.get().reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV
).reshape(-1, 3))
# Normalize HSV values on GPU
for colors_hsv in [self.shadow_colors_hsv, self.road_colors_hsv, self.water_colors_hsv]:
colors_hsv[:, 0] = colors_hsv[:, 0] * 2
colors_hsv[:, 1:] = colors_hsv[:, 1:] / 255
# Color tolerances
self.shadow_tolerance = {'hue': 15, 'sat': 0.15, 'val': 0.12}
self.road_tolerance = {'hue': 10, 'sat': 0.12, 'val': 0.15}
self.water_tolerance = {'hue': 20, 'sat': 0.15, 'val': 0.20}
# Output colors (BGR for OpenCV)
self.colors = {
'black': cp.array([0, 0, 0]),
'blue': cp.array([255, 0, 0]),
'green': cp.array([0, 255, 0]),
'gray': cp.array([128, 128, 128]),
'brown': cp.array([0, 140, 255]),
'white': cp.array([255, 255, 255])
}
self.min_area_for_clustering = 1000
self.residential_height_factor = 0.6
self.isolation_threshold = 0.6
@staticmethod
def gpu_color_distance_hsv(pixel_hsv, reference_hsv, tolerance):
"""GPU-accelerated HSV color distance calculation"""
pixel_h = pixel_hsv[0] * 2
pixel_s = pixel_hsv[1] / 255
pixel_v = pixel_hsv[2] / 255
hue_diff = cp.minimum(cp.abs(pixel_h - reference_hsv[0]),
360 - cp.abs(pixel_h - reference_hsv[0]))
sat_diff = cp.abs(pixel_s - reference_hsv[1])
val_diff = cp.abs(pixel_v - reference_hsv[2])
return cp.logical_and(
cp.logical_and(hue_diff <= tolerance['hue'],
sat_diff <= tolerance['sat']),
val_diff <= tolerance['val']
)
def segment_image_gpu(self, img):
"""GPU-accelerated image segmentation"""
# Transfer image to GPU
gpu_img = cp.asarray(img)
gpu_hsv = cp.asarray(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
height, width = img.shape[:2]
output = cp.zeros_like(gpu_img)
# Vectorized color matching on GPU
hsv_pixels = gpu_hsv.reshape(-1, 3)
# Create masks for each category
shadow_mask = cp.zeros((height * width,), dtype=bool)
road_mask = cp.zeros((height * width,), dtype=bool)
water_mask = cp.zeros((height * width,), dtype=bool)
# Vectorized color matching
for ref_hsv in self.shadow_colors_hsv:
shadow_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, self.shadow_tolerance)
for ref_hsv in self.road_colors_hsv:
road_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, self.road_tolerance)
for ref_hsv in self.water_colors_hsv:
water_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, self.water_tolerance)
# Apply masks
output_flat = output.reshape(-1, 3)
output_flat[shadow_mask] = self.colors['black']
output_flat[water_mask] = self.colors['blue']
output_flat[road_mask] = self.colors['gray']
# Vegetation and building detection
h, s, v = hsv_pixels.T
h = h * 2 # Convert to 0-360 range
s = s / 255
v = v / 255
vegetation_mask = (h >= 40) & (h <= 150) & (s >= 0.15)
building_mask = ~(shadow_mask | water_mask | road_mask | vegetation_mask)
output_flat[vegetation_mask] = self.colors['green']
output_flat[building_mask] = self.colors['white']
return output.reshape(height, width, 3)
def estimate_heights_gpu(self, img, segmented):
"""GPU-accelerated height estimation"""
gpu_segmented = cp.asarray(segmented)
buildings_mask = cp.all(gpu_segmented == self.colors['white'], axis=2)
shadows_mask = cp.all(gpu_segmented == self.colors['black'], axis=2)
# Connected components labeling on GPU
labeled_array, num_features = cp_label(buildings_mask)
# Calculate areas using GPU
areas = cp.bincount(labeled_array.ravel())[1:] # Skip background
max_area = cp.max(areas) if len(areas) > 0 else 1
height_map = cp.zeros_like(labeled_array, dtype=cp.float32)
# Process each building
for label in range(1, num_features + 1):
building_mask = (labeled_array == label)
if not cp.any(building_mask):
continue
area = areas[label-1]
size_factor = 0.3 + 0.7 * (area / max_area)
# Calculate shadow influence
dilated = binary_dilation(building_mask, structure=cp.ones((5,5)))
shadow_ratio = cp.sum(dilated & shadows_mask) / cp.sum(dilated)
shadow_factor = 0.2 + 0.8 * shadow_ratio
# Height calculation based on size and shadows
final_height = size_factor * shadow_factor
height_map[building_mask] = final_height
return height_map.get() * 0.25
def generate_mesh_gpu(self, height_map, texture_img):
"""Generate 3D mesh using GPU-accelerated calculations"""
height_map_gpu = cp.asarray(height_map)
height, width = height_map.shape
# Generate vertex positions on GPU
x, z = cp.meshgrid(cp.arange(width), cp.arange(height))
vertices = cp.stack([x, height_map_gpu * self.building_height, z], axis=-1)
vertices = vertices.reshape(-1, 3)
# Normalize coordinates
scale = max(width, height)
vertices[:, 0] = vertices[:, 0] / scale * 2 - (width / scale)
vertices[:, 2] = vertices[:, 2] / scale * 2 - (height / scale)
vertices[:, 1] = vertices[:, 1] * 2 - 1
# Generate faces
i, j = cp.meshgrid(cp.arange(height-1), cp.arange(width-1), indexing='ij')
v0 = (i * width + j).flatten()
v1 = v0 + 1
v2 = ((i + 1) * width + j).flatten()
v3 = v2 + 1
faces = cp.vstack((
cp.column_stack((v0, v2, v1)),
cp.column_stack((v1, v2, v3))
))
# Generate UV coordinates
uvs = cp.zeros((vertices.shape[0], 2))
uvs[:, 0] = x.flatten() / (width - 1)
uvs[:, 1] = 1 - (z.flatten() / (height - 1))
# Convert to CPU for mesh creation
vertices_cpu = vertices.get()
faces_cpu = faces.get()
uvs_cpu = uvs.get()
# Create mesh
if len(texture_img.shape) == 3 and texture_img.shape[2] == 4:
texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGRA2RGB)
elif len(texture_img.shape) == 3:
texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGR2RGB)
mesh = trimesh.Trimesh(
vertices=vertices_cpu,
faces=faces_cpu,
visual=trimesh.visual.TextureVisuals(
uv=uvs_cpu,
image=Image.fromarray(texture_img)
)
)
return mesh
def generate_and_process_map(prompt: str) -> str | None:
"""Generate satellite image from prompt and convert to 3D model using GPU acceleration"""
try:
# Set dimensions and device
width = height = 1024
# Generate random seed
seed = np.random.randint(0, np.iinfo(np.int32).max)
# Set random seeds
torch.manual_seed(seed)
np.random.seed(seed)
# Generate satellite image using FLUX
generator = torch.Generator(device=device).manual_seed(seed)
generated_image = flux_pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=25,
generator=generator,
guidance_scale=7.5
).images[0]
# Convert PIL Image to OpenCV format
cv_image = cv2.cvtColor(np.array(generated_image), cv2.COLOR_RGB2BGR)
# Initialize GPU-accelerated generator
generator = GPUSatelliteModelGenerator(building_height=0.09)
# Process image using GPU
print("Segmenting image using GPU...")
segmented_img = generator.segment_image_gpu(cv_image)
print("Estimating heights using GPU...")
height_map = generator.estimate_heights_gpu(cv_image, segmented_img)
# Generate mesh using GPU-accelerated calculations
print("Generating mesh using GPU...")
mesh = generator.generate_mesh_gpu(height_map, cv_image)
# Export to GLB
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, 'output.glb')
mesh.export(output_path)
return output_path
except Exception as e:
print(f"Error during generation: {str(e)}")
import traceback
traceback.print_exc()
return None
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# GPU-Accelerated Text to Map")
gr.Markdown("Generate 3D maps from text descriptions using FLUX and GPU-accelerated mesh generation.")
with gr.Row():
prompt_input = gr.Text(
label="Enter your prompt",
placeholder="eg. satellite view of downtown Manhattan"
)
with gr.Row():
generate_btn = gr.Button("Generate", variant="primary")
with gr.Row():
model_output = gr.Model3D(
label="Generated 3D Map",
clear_color=[0.0, 0.0, 0.0, 0.0],
)
# Event handler
generate_btn.click(
fn=generate_and_process_map,
inputs=[prompt_input],
outputs=[model_output],
api_name="generate"
)
if __name__ == "__main__":
# Initialize FLUX pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "jbilcke-hf/flux-satellite"
flux_pipe = DiffusionPipeline.from_pretrained(
repo_id,
torch_dtype=torch.bfloat16
)
flux_pipe.load_lora_weights(adapter_id)
flux_pipe = flux_pipe.to(device)
# Launch Gradio app
demo.queue().launch()