Spaces:
Paused
Paused
File size: 11,919 Bytes
023c8c3 bceaa96 023c8c3 bceaa96 bcf8146 bceaa96 bcf8146 023c8c3 bcf8146 2378283 bcf8146 426ec64 bcf8146 023c8c3 bcf8146 023c8c3 bcf8146 023c8c3 426ec64 023c8c3 bcf8146 023c8c3 bcf8146 023c8c3 bcf8146 023c8c3 bcf8146 023c8c3 bcf8146 023c8c3 bceaa96 bcf8146 023c8c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import os
import tempfile
import torch
import numpy as np
import gradio as gr
from PIL import Image
import cv2
from diffusers import DiffusionPipeline
import cupy as cp
from cupyx.scipy.ndimage import label as cp_label
from cupyx.scipy.ndimage import binary_dilation
from sklearn.cluster import DBSCAN
import trimesh
class GPUSatelliteModelGenerator:
def __init__(self, building_height=0.05):
self.building_height = building_height
# Move color arrays to GPU using cupy
self.shadow_colors = cp.array([
[31, 42, 76],
[58, 64, 92],
[15, 27, 56],
[21, 22, 50],
[76, 81, 99]
])
self.road_colors = cp.array([
[187, 182, 175],
[138, 138, 138],
[142, 142, 129],
[202, 199, 189]
])
self.water_colors = cp.array([
[167, 225, 217],
[67, 101, 97],
[53, 83, 84],
[47, 94, 100],
[73, 131, 135]
])
# Convert reference colors to HSV on GPU
self.shadow_colors_hsv = cp.asarray(cv2.cvtColor(
self.shadow_colors.get().reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV
).reshape(-1, 3))
self.road_colors_hsv = cp.asarray(cv2.cvtColor(
self.road_colors.get().reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV
).reshape(-1, 3))
self.water_colors_hsv = cp.asarray(cv2.cvtColor(
self.water_colors.get().reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV
).reshape(-1, 3))
# Normalize HSV values on GPU
for colors_hsv in [self.shadow_colors_hsv, self.road_colors_hsv, self.water_colors_hsv]:
colors_hsv[:, 0] = colors_hsv[:, 0] * 2
colors_hsv[:, 1:] = colors_hsv[:, 1:] / 255
# Color tolerances
self.shadow_tolerance = {'hue': 15, 'sat': 0.15, 'val': 0.12}
self.road_tolerance = {'hue': 10, 'sat': 0.12, 'val': 0.15}
self.water_tolerance = {'hue': 20, 'sat': 0.15, 'val': 0.20}
# Output colors (BGR for OpenCV)
self.colors = {
'black': cp.array([0, 0, 0]),
'blue': cp.array([255, 0, 0]),
'green': cp.array([0, 255, 0]),
'gray': cp.array([128, 128, 128]),
'brown': cp.array([0, 140, 255]),
'white': cp.array([255, 255, 255])
}
self.min_area_for_clustering = 1000
self.residential_height_factor = 0.6
self.isolation_threshold = 0.6
@staticmethod
def gpu_color_distance_hsv(pixel_hsv, reference_hsv, tolerance):
"""GPU-accelerated HSV color distance calculation"""
pixel_h = pixel_hsv[0] * 2
pixel_s = pixel_hsv[1] / 255
pixel_v = pixel_hsv[2] / 255
hue_diff = cp.minimum(cp.abs(pixel_h - reference_hsv[0]),
360 - cp.abs(pixel_h - reference_hsv[0]))
sat_diff = cp.abs(pixel_s - reference_hsv[1])
val_diff = cp.abs(pixel_v - reference_hsv[2])
return cp.logical_and(
cp.logical_and(hue_diff <= tolerance['hue'],
sat_diff <= tolerance['sat']),
val_diff <= tolerance['val']
)
def segment_image_gpu(self, img):
"""GPU-accelerated image segmentation"""
# Transfer image to GPU
gpu_img = cp.asarray(img)
gpu_hsv = cp.asarray(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
height, width = img.shape[:2]
output = cp.zeros_like(gpu_img)
# Vectorized color matching on GPU
hsv_pixels = gpu_hsv.reshape(-1, 3)
# Create masks for each category
shadow_mask = cp.zeros((height * width,), dtype=bool)
road_mask = cp.zeros((height * width,), dtype=bool)
water_mask = cp.zeros((height * width,), dtype=bool)
# Vectorized color matching
for ref_hsv in self.shadow_colors_hsv:
shadow_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, self.shadow_tolerance)
for ref_hsv in self.road_colors_hsv:
road_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, self.road_tolerance)
for ref_hsv in self.water_colors_hsv:
water_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, self.water_tolerance)
# Apply masks
output_flat = output.reshape(-1, 3)
output_flat[shadow_mask] = self.colors['black']
output_flat[water_mask] = self.colors['blue']
output_flat[road_mask] = self.colors['gray']
# Vegetation and building detection
h, s, v = hsv_pixels.T
h = h * 2 # Convert to 0-360 range
s = s / 255
v = v / 255
vegetation_mask = (h >= 40) & (h <= 150) & (s >= 0.15)
building_mask = ~(shadow_mask | water_mask | road_mask | vegetation_mask)
output_flat[vegetation_mask] = self.colors['green']
output_flat[building_mask] = self.colors['white']
return output.reshape(height, width, 3)
def estimate_heights_gpu(self, img, segmented):
"""GPU-accelerated height estimation"""
gpu_segmented = cp.asarray(segmented)
buildings_mask = cp.all(gpu_segmented == self.colors['white'], axis=2)
shadows_mask = cp.all(gpu_segmented == self.colors['black'], axis=2)
# Connected components labeling on GPU
labeled_array, num_features = cp_label(buildings_mask)
# Calculate areas using GPU
areas = cp.bincount(labeled_array.ravel())[1:] # Skip background
max_area = cp.max(areas) if len(areas) > 0 else 1
height_map = cp.zeros_like(labeled_array, dtype=cp.float32)
# Process each building
for label in range(1, num_features + 1):
building_mask = (labeled_array == label)
if not cp.any(building_mask):
continue
area = areas[label-1]
size_factor = 0.3 + 0.7 * (area / max_area)
# Calculate shadow influence
dilated = binary_dilation(building_mask, structure=cp.ones((5,5)))
shadow_ratio = cp.sum(dilated & shadows_mask) / cp.sum(dilated)
shadow_factor = 0.2 + 0.8 * shadow_ratio
# Height calculation based on size and shadows
final_height = size_factor * shadow_factor
height_map[building_mask] = final_height
return height_map.get() * 0.25
def generate_mesh_gpu(self, height_map, texture_img):
"""Generate 3D mesh using GPU-accelerated calculations"""
height_map_gpu = cp.asarray(height_map)
height, width = height_map.shape
# Generate vertex positions on GPU
x, z = cp.meshgrid(cp.arange(width), cp.arange(height))
vertices = cp.stack([x, height_map_gpu * self.building_height, z], axis=-1)
vertices = vertices.reshape(-1, 3)
# Normalize coordinates
scale = max(width, height)
vertices[:, 0] = vertices[:, 0] / scale * 2 - (width / scale)
vertices[:, 2] = vertices[:, 2] / scale * 2 - (height / scale)
vertices[:, 1] = vertices[:, 1] * 2 - 1
# Generate faces
i, j = cp.meshgrid(cp.arange(height-1), cp.arange(width-1), indexing='ij')
v0 = (i * width + j).flatten()
v1 = v0 + 1
v2 = ((i + 1) * width + j).flatten()
v3 = v2 + 1
faces = cp.vstack((
cp.column_stack((v0, v2, v1)),
cp.column_stack((v1, v2, v3))
))
# Generate UV coordinates
uvs = cp.zeros((vertices.shape[0], 2))
uvs[:, 0] = x.flatten() / (width - 1)
uvs[:, 1] = 1 - (z.flatten() / (height - 1))
# Convert to CPU for mesh creation
vertices_cpu = vertices.get()
faces_cpu = faces.get()
uvs_cpu = uvs.get()
# Create mesh
if len(texture_img.shape) == 3 and texture_img.shape[2] == 4:
texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGRA2RGB)
elif len(texture_img.shape) == 3:
texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGR2RGB)
mesh = trimesh.Trimesh(
vertices=vertices_cpu,
faces=faces_cpu,
visual=trimesh.visual.TextureVisuals(
uv=uvs_cpu,
image=Image.fromarray(texture_img)
)
)
return mesh
def generate_and_process_map(prompt: str) -> str | None:
"""Generate satellite image from prompt and convert to 3D model using GPU acceleration"""
try:
# Set dimensions and device
width = height = 1024
# Generate random seed
seed = np.random.randint(0, np.iinfo(np.int32).max)
# Set random seeds
torch.manual_seed(seed)
np.random.seed(seed)
# Generate satellite image using FLUX
generator = torch.Generator(device=device).manual_seed(seed)
generated_image = flux_pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=25,
generator=generator,
guidance_scale=7.5
).images[0]
# Convert PIL Image to OpenCV format
cv_image = cv2.cvtColor(np.array(generated_image), cv2.COLOR_RGB2BGR)
# Initialize GPU-accelerated generator
generator = GPUSatelliteModelGenerator(building_height=0.09)
# Process image using GPU
print("Segmenting image using GPU...")
segmented_img = generator.segment_image_gpu(cv_image)
print("Estimating heights using GPU...")
height_map = generator.estimate_heights_gpu(cv_image, segmented_img)
# Generate mesh using GPU-accelerated calculations
print("Generating mesh using GPU...")
mesh = generator.generate_mesh_gpu(height_map, cv_image)
# Export to GLB
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, 'output.glb')
mesh.export(output_path)
return output_path
except Exception as e:
print(f"Error during generation: {str(e)}")
import traceback
traceback.print_exc()
return None
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# GPU-Accelerated Text to Map")
gr.Markdown("Generate 3D maps from text descriptions using FLUX and GPU-accelerated mesh generation.")
with gr.Row():
prompt_input = gr.Text(
label="Enter your prompt",
placeholder="eg. satellite view of downtown Manhattan"
)
with gr.Row():
generate_btn = gr.Button("Generate", variant="primary")
with gr.Row():
model_output = gr.Model3D(
label="Generated 3D Map",
clear_color=[0.0, 0.0, 0.0, 0.0],
)
# Event handler
generate_btn.click(
fn=generate_and_process_map,
inputs=[prompt_input],
outputs=[model_output],
api_name="generate"
)
if __name__ == "__main__":
# Initialize FLUX pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "jbilcke-hf/flux-satellite"
flux_pipe = DiffusionPipeline.from_pretrained(
repo_id,
torch_dtype=torch.bfloat16
)
flux_pipe.load_lora_weights(adapter_id)
flux_pipe = flux_pipe.to(device)
# Launch Gradio app
demo.queue().launch() |