Spaces:
Running
Running
# HunyuanVideo | |
## Training | |
For LoRA training, specify `--training_type lora`. For full finetuning, specify `--training_type full-finetune`. | |
```bash | |
#!/bin/bash | |
export WANDB_MODE="offline" | |
export NCCL_P2P_DISABLE=1 | |
export TORCH_NCCL_ENABLE_MONITORING=0 | |
export FINETRAINERS_LOG_LEVEL=DEBUG | |
GPU_IDS="0,1" | |
DATA_ROOT="/path/to/dataset" | |
CAPTION_COLUMN="prompts.txt" | |
VIDEO_COLUMN="videos.txt" | |
OUTPUT_DIR="/path/to/models/hunyuan-video/" | |
ID_TOKEN="afkx" | |
# Model arguments | |
model_cmd="--model_name hunyuan_video \ | |
--pretrained_model_name_or_path hunyuanvideo-community/HunyuanVideo" | |
# Dataset arguments | |
dataset_cmd="--data_root $DATA_ROOT \ | |
--video_column $VIDEO_COLUMN \ | |
--caption_column $CAPTION_COLUMN \ | |
--id_token $ID_TOKEN \ | |
--video_resolution_buckets 17x512x768 49x512x768 61x512x768 \ | |
--caption_dropout_p 0.05" | |
# Dataloader arguments | |
dataloader_cmd="--dataloader_num_workers 0" | |
# Diffusion arguments | |
diffusion_cmd="" | |
# Training arguments | |
training_cmd="--training_type lora \ | |
--seed 42 \ | |
--batch_size 1 \ | |
--train_steps 500 \ | |
--rank 128 \ | |
--lora_alpha 128 \ | |
--target_modules to_q to_k to_v to_out.0 \ | |
--gradient_accumulation_steps 1 \ | |
--gradient_checkpointing \ | |
--checkpointing_steps 500 \ | |
--checkpointing_limit 2 \ | |
--enable_slicing \ | |
--enable_tiling" | |
# Optimizer arguments | |
optimizer_cmd="--optimizer adamw \ | |
--lr 2e-5 \ | |
--lr_scheduler constant_with_warmup \ | |
--lr_warmup_steps 100 \ | |
--lr_num_cycles 1 \ | |
--beta1 0.9 \ | |
--beta2 0.95 \ | |
--weight_decay 1e-4 \ | |
--epsilon 1e-8 \ | |
--max_grad_norm 1.0" | |
# Miscellaneous arguments | |
miscellaneous_cmd="--tracker_name finetrainers-hunyuan-video \ | |
--output_dir $OUTPUT_DIR \ | |
--nccl_timeout 1800 \ | |
--report_to wandb" | |
cmd="accelerate launch --config_file accelerate_configs/uncompiled_8.yaml --gpu_ids $GPU_IDS train.py \ | |
$model_cmd \ | |
$dataset_cmd \ | |
$dataloader_cmd \ | |
$diffusion_cmd \ | |
$training_cmd \ | |
$optimizer_cmd \ | |
$miscellaneous_cmd" | |
echo "Running command: $cmd" | |
eval $cmd | |
echo -ne "-------------------- Finished executing script --------------------\n\n" | |
``` | |
## Memory Usage | |
### LoRA | |
> [!NOTE] | |
> | |
> The below measurements are done in `torch.bfloat16` precision. Memory usage can further be reduce by passing `--layerwise_upcasting_modules transformer` to the training script. This will cast the model weights to `torch.float8_e4m3fn` or `torch.float8_e5m2`, which halves the memory requirement for model weights. Computation is performed in the dtype set by `--transformer_dtype` (which defaults to `bf16`). | |
LoRA with rank 128, batch size 1, gradient checkpointing, optimizer adamw, `49x512x768` resolutions, **without precomputation**: | |
``` | |
Training configuration: { | |
"trainable parameters": 163577856, | |
"total samples": 69, | |
"train epochs": 1, | |
"train steps": 10, | |
"batches per device": 1, | |
"total batches observed per epoch": 69, | |
"train batch size": 1, | |
"gradient accumulation steps": 1 | |
} | |
``` | |
| stage | memory_allocated | max_memory_reserved | | |
|:-----------------------:|:----------------:|:-------------------:| | |
| before training start | 38.889 | 39.020 | | |
| before validation start | 39.747 | 56.266 | | |
| after validation end | 39.748 | 58.385 | | |
| after epoch 1 | 39.748 | 40.910 | | |
| after training end | 25.288 | 40.910 | | |
Note: requires about `59` GB of VRAM when validation is performed. | |
LoRA with rank 128, batch size 1, gradient checkpointing, optimizer adamw, `49x512x768` resolutions, **with precomputation**: | |
``` | |
Training configuration: { | |
"trainable parameters": 163577856, | |
"total samples": 1, | |
"train epochs": 10, | |
"train steps": 10, | |
"batches per device": 1, | |
"total batches observed per epoch": 1, | |
"train batch size": 1, | |
"gradient accumulation steps": 1 | |
} | |
``` | |
| stage | memory_allocated | max_memory_reserved | | |
|:-----------------------------:|:----------------:|:-------------------:| | |
| after precomputing conditions | 14.232 | 14.461 | | |
| after precomputing latents | 14.717 | 17.244 | | |
| before training start | 24.195 | 26.039 | | |
| after epoch 1 | 24.83 | 42.387 | | |
| before validation start | 24.842 | 42.387 | | |
| after validation end | 39.558 | 46.947 | | |
| after training end | 24.842 | 41.039 | | |
Note: requires about `47` GB of VRAM with validation. If validation is not performed, the memory usage is reduced to about `42` GB. | |
### Full finetuning | |
Current, full finetuning is not supported for HunyuanVideo. It goes out of memory (OOM) for `49x512x768` resolutions. | |
## Inference | |
Assuming your LoRA is saved and pushed to the HF Hub, and named `my-awesome-name/my-awesome-lora`, we can now use the finetuned model for inference: | |
```py | |
import torch | |
from diffusers import HunyuanVideoPipeline | |
import torch | |
from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel | |
from diffusers.utils import export_to_video | |
model_id = "hunyuanvideo-community/HunyuanVideo" | |
transformer = HunyuanVideoTransformer3DModel.from_pretrained( | |
model_id, subfolder="transformer", torch_dtype=torch.bfloat16 | |
) | |
pipe = HunyuanVideoPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch.float16) | |
pipe.load_lora_weights("my-awesome-name/my-awesome-lora", adapter_name="hunyuanvideo-lora") | |
pipe.set_adapters(["hunyuanvideo-lora"], [0.6]) | |
pipe.vae.enable_tiling() | |
pipe.to("cuda") | |
output = pipe( | |
prompt="A cat walks on the grass, realistic", | |
height=320, | |
width=512, | |
num_frames=61, | |
num_inference_steps=30, | |
).frames[0] | |
export_to_video(output, "output.mp4", fps=15) | |
``` | |
You can refer to the following guides to know more about the model pipeline and performing LoRA inference in `diffusers`: | |
* [Hunyuan-Video in Diffusers](https://huggingface.co/docs/diffusers/main/api/pipelines/hunyuan_video) | |
* [Load LoRAs for inference](https://huggingface.co/docs/diffusers/main/en/tutorials/using_peft_for_inference) | |
* [Merge LoRAs](https://huggingface.co/docs/diffusers/main/en/using-diffusers/merge_loras) |