VideoModelStudio / docs /finetrainers /documentation_models_hunyuan_video.md
jbilcke-hf's picture
jbilcke-hf HF Staff
upgrading our code to support the new finetrainers
d464085
|
raw
history blame
6.32 kB
# HunyuanVideo
## Training
For LoRA training, specify `--training_type lora`. For full finetuning, specify `--training_type full-finetune`.
```bash
#!/bin/bash
export WANDB_MODE="offline"
export NCCL_P2P_DISABLE=1
export TORCH_NCCL_ENABLE_MONITORING=0
export FINETRAINERS_LOG_LEVEL=DEBUG
GPU_IDS="0,1"
DATA_ROOT="/path/to/dataset"
CAPTION_COLUMN="prompts.txt"
VIDEO_COLUMN="videos.txt"
OUTPUT_DIR="/path/to/models/hunyuan-video/"
ID_TOKEN="afkx"
# Model arguments
model_cmd="--model_name hunyuan_video \
--pretrained_model_name_or_path hunyuanvideo-community/HunyuanVideo"
# Dataset arguments
dataset_cmd="--data_root $DATA_ROOT \
--video_column $VIDEO_COLUMN \
--caption_column $CAPTION_COLUMN \
--id_token $ID_TOKEN \
--video_resolution_buckets 17x512x768 49x512x768 61x512x768 \
--caption_dropout_p 0.05"
# Dataloader arguments
dataloader_cmd="--dataloader_num_workers 0"
# Diffusion arguments
diffusion_cmd=""
# Training arguments
training_cmd="--training_type lora \
--seed 42 \
--batch_size 1 \
--train_steps 500 \
--rank 128 \
--lora_alpha 128 \
--target_modules to_q to_k to_v to_out.0 \
--gradient_accumulation_steps 1 \
--gradient_checkpointing \
--checkpointing_steps 500 \
--checkpointing_limit 2 \
--enable_slicing \
--enable_tiling"
# Optimizer arguments
optimizer_cmd="--optimizer adamw \
--lr 2e-5 \
--lr_scheduler constant_with_warmup \
--lr_warmup_steps 100 \
--lr_num_cycles 1 \
--beta1 0.9 \
--beta2 0.95 \
--weight_decay 1e-4 \
--epsilon 1e-8 \
--max_grad_norm 1.0"
# Miscellaneous arguments
miscellaneous_cmd="--tracker_name finetrainers-hunyuan-video \
--output_dir $OUTPUT_DIR \
--nccl_timeout 1800 \
--report_to wandb"
cmd="accelerate launch --config_file accelerate_configs/uncompiled_8.yaml --gpu_ids $GPU_IDS train.py \
$model_cmd \
$dataset_cmd \
$dataloader_cmd \
$diffusion_cmd \
$training_cmd \
$optimizer_cmd \
$miscellaneous_cmd"
echo "Running command: $cmd"
eval $cmd
echo -ne "-------------------- Finished executing script --------------------\n\n"
```
## Memory Usage
### LoRA
> [!NOTE]
>
> The below measurements are done in `torch.bfloat16` precision. Memory usage can further be reduce by passing `--layerwise_upcasting_modules transformer` to the training script. This will cast the model weights to `torch.float8_e4m3fn` or `torch.float8_e5m2`, which halves the memory requirement for model weights. Computation is performed in the dtype set by `--transformer_dtype` (which defaults to `bf16`).
LoRA with rank 128, batch size 1, gradient checkpointing, optimizer adamw, `49x512x768` resolutions, **without precomputation**:
```
Training configuration: {
"trainable parameters": 163577856,
"total samples": 69,
"train epochs": 1,
"train steps": 10,
"batches per device": 1,
"total batches observed per epoch": 69,
"train batch size": 1,
"gradient accumulation steps": 1
}
```
| stage | memory_allocated | max_memory_reserved |
|:-----------------------:|:----------------:|:-------------------:|
| before training start | 38.889 | 39.020 |
| before validation start | 39.747 | 56.266 |
| after validation end | 39.748 | 58.385 |
| after epoch 1 | 39.748 | 40.910 |
| after training end | 25.288 | 40.910 |
Note: requires about `59` GB of VRAM when validation is performed.
LoRA with rank 128, batch size 1, gradient checkpointing, optimizer adamw, `49x512x768` resolutions, **with precomputation**:
```
Training configuration: {
"trainable parameters": 163577856,
"total samples": 1,
"train epochs": 10,
"train steps": 10,
"batches per device": 1,
"total batches observed per epoch": 1,
"train batch size": 1,
"gradient accumulation steps": 1
}
```
| stage | memory_allocated | max_memory_reserved |
|:-----------------------------:|:----------------:|:-------------------:|
| after precomputing conditions | 14.232 | 14.461 |
| after precomputing latents | 14.717 | 17.244 |
| before training start | 24.195 | 26.039 |
| after epoch 1 | 24.83 | 42.387 |
| before validation start | 24.842 | 42.387 |
| after validation end | 39.558 | 46.947 |
| after training end | 24.842 | 41.039 |
Note: requires about `47` GB of VRAM with validation. If validation is not performed, the memory usage is reduced to about `42` GB.
### Full finetuning
Current, full finetuning is not supported for HunyuanVideo. It goes out of memory (OOM) for `49x512x768` resolutions.
## Inference
Assuming your LoRA is saved and pushed to the HF Hub, and named `my-awesome-name/my-awesome-lora`, we can now use the finetuned model for inference:
```py
import torch
from diffusers import HunyuanVideoPipeline
import torch
from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
from diffusers.utils import export_to_video
model_id = "hunyuanvideo-community/HunyuanVideo"
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
model_id, subfolder="transformer", torch_dtype=torch.bfloat16
)
pipe = HunyuanVideoPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch.float16)
pipe.load_lora_weights("my-awesome-name/my-awesome-lora", adapter_name="hunyuanvideo-lora")
pipe.set_adapters(["hunyuanvideo-lora"], [0.6])
pipe.vae.enable_tiling()
pipe.to("cuda")
output = pipe(
prompt="A cat walks on the grass, realistic",
height=320,
width=512,
num_frames=61,
num_inference_steps=30,
).frames[0]
export_to_video(output, "output.mp4", fps=15)
```
You can refer to the following guides to know more about the model pipeline and performing LoRA inference in `diffusers`:
* [Hunyuan-Video in Diffusers](https://huggingface.co/docs/diffusers/main/api/pipelines/hunyuan_video)
* [Load LoRAs for inference](https://huggingface.co/docs/diffusers/main/en/tutorials/using_peft_for_inference)
* [Merge LoRAs](https://huggingface.co/docs/diffusers/main/en/using-diffusers/merge_loras)