Spaces:
Paused
Paused
Jasper Sands
commited on
Commit
·
2fcfcbd
1
Parent(s):
e72bb6f
new model
Browse files- app.py +165 -65
- requirements.txt +5 -4
app.py
CHANGED
@@ -1,76 +1,110 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import pandas as pd
|
3 |
-
import nltk
|
4 |
-
from nltk.corpus import stopwords
|
5 |
-
from sentence_transformers import SentenceTransformer, util
|
6 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
-
|
9 |
from unsloth import FastLanguageModel
|
10 |
from peft import PeftModel
|
11 |
-
from unsloth.chat_templates import get_chat_template
|
12 |
|
13 |
-
#
|
14 |
-
nltk.download("stopwords")
|
15 |
-
|
16 |
-
# 1. Load model + tokenizer
|
17 |
-
base_model_name = "unsloth/Llama-3.2-3B-Instruct"
|
18 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
19 |
-
model_name=
|
20 |
max_seq_length=2048,
|
21 |
dtype=None,
|
22 |
load_in_4bit=True
|
23 |
)
|
24 |
|
25 |
-
|
26 |
-
adapter_path = "jaspersands/model" #
|
|
|
27 |
model = PeftModel.from_pretrained(model, adapter_path)
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
#
|
34 |
-
def search_relevant_policies(query, df, top_n=10):
|
|
|
35 |
tfidf = TfidfVectorizer(stop_words='english')
|
36 |
tfidf_matrix = tfidf.fit_transform(df['Content'])
|
|
|
|
|
37 |
query_vector = tfidf.transform([query])
|
|
|
|
|
38 |
cosine_sim = cosine_similarity(query_vector, tfidf_matrix).flatten()
|
|
|
|
|
|
|
|
|
|
|
39 |
top_indices = cosine_sim.argsort()[-top_n:][::-1]
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
def get_content_after_query(response_text, query):
|
|
|
43 |
query_position = response_text.lower().find(query.lower())
|
44 |
if query_position != -1:
|
|
|
45 |
res = response_text[query_position + len(query):].strip()
|
46 |
return res[11:]
|
47 |
else:
|
|
|
48 |
return response_text.strip()
|
49 |
|
50 |
-
|
51 |
-
|
|
|
52 |
relevant_policies = search_relevant_policies(query, df)
|
53 |
|
54 |
-
#
|
55 |
formatted_policies = []
|
56 |
for index, row in relevant_policies.iterrows():
|
57 |
-
formatted_policy =
|
58 |
-
|
59 |
-
|
60 |
-
f"From: {row['From']}\nTo: {row['To']}\nContent: {row['Content']}\n"
|
61 |
-
f"Link: {row['Link to Content']}\n"
|
62 |
-
)
|
63 |
-
formatted_policies.append(formatted_policy)
|
64 |
relevant_policy_text = "\n\n".join(formatted_policies)
|
65 |
|
66 |
-
#
|
67 |
messages_with_relevant_policies = [
|
68 |
{"role": "system", "content": relevant_policy_text},
|
69 |
{"role": "user", "content": query},
|
70 |
]
|
71 |
|
72 |
-
#
|
73 |
-
tokenizer = get_chat_template(
|
|
|
|
|
|
|
74 |
inputs = tokenizer.apply_chat_template(
|
75 |
messages_with_relevant_policies,
|
76 |
tokenize=True,
|
@@ -78,43 +112,109 @@ def process_query(query, tokenizer):
|
|
78 |
return_tensors="pt"
|
79 |
).to("cuda")
|
80 |
|
81 |
-
# 5. Generate output
|
82 |
FastLanguageModel.for_inference(model)
|
83 |
-
outputs = model.generate(
|
84 |
-
|
85 |
-
|
86 |
-
use_cache=True,
|
87 |
-
temperature=1.5,
|
88 |
-
min_p=0.1
|
89 |
-
)
|
90 |
generated_response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
91 |
response = get_content_after_query(generated_response, query)
|
92 |
|
93 |
-
#
|
94 |
-
|
|
|
|
|
|
|
95 |
response_embedding = model_sbert.encode(generated_response, convert_to_tensor=True)
|
|
|
|
|
96 |
policy_embeddings = model_sbert.encode(relevant_policies['Content'].tolist(), convert_to_tensor=True)
|
|
|
|
|
97 |
cosine_similarities = util.cos_sim(response_embedding, policy_embeddings).flatten()
|
|
|
|
|
98 |
most_relevant_index = cosine_similarities.argmax().item()
|
99 |
most_relevant_link = relevant_policies.iloc[most_relevant_index]['Link to Content']
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
|
120 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from unsloth import FastLanguageModel
|
2 |
from peft import PeftModel
|
|
|
3 |
|
4 |
+
# Load the base model with FastLanguageModel
|
|
|
|
|
|
|
|
|
5 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
6 |
+
model_name="unsloth/Llama-3.2-3B-Instruct",
|
7 |
max_seq_length=2048,
|
8 |
dtype=None,
|
9 |
load_in_4bit=True
|
10 |
)
|
11 |
|
12 |
+
base_model_name = "unsloth/Llama-3.2-3B-Instruct"
|
13 |
+
adapter_path = "jaspersands/model" # Path to LoRA adapter on Hugging Face
|
14 |
+
|
15 |
model = PeftModel.from_pretrained(model, adapter_path)
|
16 |
|
17 |
+
# Code for processing a query
|
18 |
+
import pandas as pd
|
19 |
+
from unsloth.chat_templates import get_chat_template
|
20 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
21 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
22 |
+
from sentence_transformers import SentenceTransformer, util
|
23 |
+
import nltk
|
24 |
+
|
25 |
+
# Ensure you have NLTK stopwords downloaded
|
26 |
+
nltk.download("stopwords")
|
27 |
+
from nltk.corpus import stopwords
|
28 |
+
|
29 |
+
# Step 1: Load the CSV file
|
30 |
+
file_path = '/content/Clean Missouri Data.csv'
|
31 |
+
df = pd.read_csv(file_path, encoding='MacRoman')
|
32 |
|
33 |
+
# Step 2: Define a function to search relevant policies based on the user's query using cosine similarity
|
34 |
+
def search_relevant_policies(query, df, top_n=10, max_chars = 40000):
|
35 |
+
# Convert policies into a TF-IDF matrix
|
36 |
tfidf = TfidfVectorizer(stop_words='english')
|
37 |
tfidf_matrix = tfidf.fit_transform(df['Content'])
|
38 |
+
|
39 |
+
# Get the query as a TF-IDF vector
|
40 |
query_vector = tfidf.transform([query])
|
41 |
+
|
42 |
+
# Calculate cosine similarity between query and policies
|
43 |
cosine_sim = cosine_similarity(query_vector, tfidf_matrix).flatten()
|
44 |
+
|
45 |
+
# Get the top N relevant policies
|
46 |
+
top_indices = cosine_sim.argsort()[-top_n:][::-1]
|
47 |
+
relevant_policies = df.iloc[top_indices]
|
48 |
+
|
49 |
top_indices = cosine_sim.argsort()[-top_n:][::-1]
|
50 |
+
relevant_policies = df.iloc[top_indices].copy()
|
51 |
+
|
52 |
+
# Ensure total text is capped at max_chars
|
53 |
+
char_count = 0
|
54 |
+
valid_indices = []
|
55 |
+
|
56 |
+
for idx, row in relevant_policies.iterrows():
|
57 |
+
content_length = len(row["Content"])
|
58 |
+
|
59 |
+
# If adding this content exceeds max_chars, stop adding any further policies
|
60 |
+
if char_count + content_length > max_chars:
|
61 |
+
break
|
62 |
+
|
63 |
+
# Otherwise, keep this policy
|
64 |
+
char_count += content_length
|
65 |
+
valid_indices.append(idx)
|
66 |
+
|
67 |
+
# Filter the dataframe to only include valid rows
|
68 |
+
truncated_policies = relevant_policies.loc[valid_indices]
|
69 |
+
|
70 |
+
return truncated_policies
|
71 |
+
|
72 |
|
73 |
def get_content_after_query(response_text, query):
|
74 |
+
# Find the position of the query within the response text
|
75 |
query_position = response_text.lower().find(query.lower())
|
76 |
if query_position != -1:
|
77 |
+
# Return the content after the query position
|
78 |
res = response_text[query_position + len(query):].strip()
|
79 |
return res[11:]
|
80 |
else:
|
81 |
+
# If the query is not found, return the full response text as a fallback
|
82 |
return response_text.strip()
|
83 |
|
84 |
+
|
85 |
+
def process_query(query,tokenizer):
|
86 |
+
|
87 |
relevant_policies = search_relevant_policies(query, df)
|
88 |
|
89 |
+
# Step 5: Combine the relevant policies with the user's query for the model
|
90 |
formatted_policies = []
|
91 |
for index, row in relevant_policies.iterrows():
|
92 |
+
# formatted_policy = f"Title: {row['Title']}\nTerritory: {row['Territory']}\nType: {row['Type']}\nYear: {row['Year']}\nCategory: {row['Category']}\nFrom: {row['From']}\nTo: {row['To']}\nContent: {row['Content']}\nLink: {row['Link to Content']}\n"
|
93 |
+
# formatted_policies.append(formatted_policy)
|
94 |
+
formatted_policies.append(row['Content'])
|
|
|
|
|
|
|
|
|
95 |
relevant_policy_text = "\n\n".join(formatted_policies)
|
96 |
|
97 |
+
# Messages with relevant policies for the model
|
98 |
messages_with_relevant_policies = [
|
99 |
{"role": "system", "content": relevant_policy_text},
|
100 |
{"role": "user", "content": query},
|
101 |
]
|
102 |
|
103 |
+
# Step 6: Apply chat template and tokenize
|
104 |
+
tokenizer = get_chat_template(
|
105 |
+
tokenizer,
|
106 |
+
chat_template="llama-3.1",
|
107 |
+
)
|
108 |
inputs = tokenizer.apply_chat_template(
|
109 |
messages_with_relevant_policies,
|
110 |
tokenize=True,
|
|
|
112 |
return_tensors="pt"
|
113 |
).to("cuda")
|
114 |
|
|
|
115 |
FastLanguageModel.for_inference(model)
|
116 |
+
outputs = model.generate(input_ids=inputs, max_new_tokens=512, use_cache=True, temperature=0.7, min_p=0.1)
|
117 |
+
|
118 |
+
# Step 7: Decode the output
|
|
|
|
|
|
|
|
|
119 |
generated_response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
120 |
response = get_content_after_query(generated_response, query)
|
121 |
|
122 |
+
# Step 8: Rank the top 10 policies using SBERT for the final link
|
123 |
+
# Load SBERT model
|
124 |
+
model_sbert = SentenceTransformer('all-MiniLM-L6-v2') # You can choose another SBERT model if desired
|
125 |
+
|
126 |
+
# Encode the generated response using SBERT
|
127 |
response_embedding = model_sbert.encode(generated_response, convert_to_tensor=True)
|
128 |
+
|
129 |
+
# Encode each policy in the top 10 list
|
130 |
policy_embeddings = model_sbert.encode(relevant_policies['Content'].tolist(), convert_to_tensor=True)
|
131 |
+
|
132 |
+
# Calculate cosine similarities between the generated response and each policy embedding
|
133 |
cosine_similarities = util.cos_sim(response_embedding, policy_embeddings).flatten()
|
134 |
+
|
135 |
+
# Identify the policy with the highest SBERT cosine similarity score
|
136 |
most_relevant_index = cosine_similarities.argmax().item()
|
137 |
most_relevant_link = relevant_policies.iloc[most_relevant_index]['Link to Content']
|
138 |
|
139 |
+
# Print the link to the most relevant source
|
140 |
+
return {
|
141 |
+
"response": response,
|
142 |
+
"most_relevant_link": most_relevant_link
|
143 |
+
}
|
144 |
+
|
145 |
+
|
146 |
+
# Load Google Sheets to store results
|
147 |
+
import json
|
148 |
+
from google.oauth2.service_account import Credentials
|
149 |
+
import gspread
|
150 |
+
import pandas as pd
|
151 |
+
|
152 |
+
# Load the service account JSON
|
153 |
+
json_file_path = "fostercare-449201-75a303a8c238.json" # Load the credentials for the service account
|
154 |
+
with open(json_file_path, 'r') as file:
|
155 |
+
service_account_data = json.load(file)
|
156 |
+
|
157 |
+
# Authenticate using the loaded service account data
|
158 |
+
scopes = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
|
159 |
+
creds = Credentials.from_service_account_info(service_account_data, scopes=scopes)
|
160 |
+
client = gspread.authorize(creds)
|
161 |
+
|
162 |
+
# Open the shared Google Sheet by name
|
163 |
+
spreadsheet = client.open("Foster Care RA Responses").sheet1
|
164 |
+
|
165 |
+
# Link to Google Sheet
|
166 |
+
# https://docs.google.com/spreadsheets/d/15iEcxmTgkgfcxzDGnq3i_nP1hiAXgb3RplHgqAMEyHA/edit?usp=sharing
|
167 |
+
|
168 |
+
|
169 |
+
# Code to set up Gradio GUI
|
170 |
+
import gradio as gr
|
171 |
+
|
172 |
+
def greet(query):
|
173 |
+
result_1 = process_query(query, tokenizer)
|
174 |
+
content_after_query_1 = result_1["response"]
|
175 |
+
|
176 |
+
result_2 = process_query(query, tokenizer)
|
177 |
+
content_after_query_2 = result_2["response"]
|
178 |
+
|
179 |
+
return [content_after_query_1, content_after_query_2]
|
180 |
+
|
181 |
+
def choose_preference(name, output1, output2, preference, query):
|
182 |
+
if not name:
|
183 |
+
return "Please enter your name before submitting."
|
184 |
+
|
185 |
+
if preference == "Output 1":
|
186 |
+
new_row = [query, output1, output2, name]
|
187 |
+
spreadsheet.append_row(new_row)
|
188 |
+
return f"You preferred: Output 1 - {output1}"
|
189 |
+
elif preference == "Output 2":
|
190 |
+
new_row = [query, output2, output1, name]
|
191 |
+
spreadsheet.append_row(new_row)
|
192 |
+
return f"You preferred: Output 2 - {output2}"
|
193 |
+
else:
|
194 |
+
return "No preference selected."
|
195 |
+
|
196 |
+
# Define the interface
|
197 |
+
with gr.Blocks() as demo:
|
198 |
+
# Name input
|
199 |
+
name_input = gr.Textbox(label="Enter your name")
|
200 |
+
|
201 |
+
# Input for query
|
202 |
+
query_input = gr.Textbox(label="Enter your query")
|
203 |
+
|
204 |
+
# Outputs
|
205 |
+
output_1 = gr.Textbox(label="Output 1", interactive=False)
|
206 |
+
output_2 = gr.Textbox(label="Output 2", interactive=False)
|
207 |
+
|
208 |
+
# Preference selection
|
209 |
+
preference = gr.Radio(["Output 1", "Output 2"], label="Choose your preferred output")
|
210 |
+
preference_result = gr.Textbox(label="Your Preference", interactive=False)
|
211 |
+
|
212 |
+
# Buttons
|
213 |
+
generate_button = gr.Button("Generate Outputs")
|
214 |
+
submit_button = gr.Button("Submit Preference")
|
215 |
+
|
216 |
+
# Link actions to buttons
|
217 |
+
generate_button.click(greet, inputs=query_input, outputs=[output_1, output_2])
|
218 |
+
submit_button.click(choose_preference, inputs=[name_input, output_1, output_2, preference, query_input], outputs=preference_result)
|
219 |
|
220 |
+
demo.launch()
|
|
requirements.txt
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
-
|
|
|
2 |
unsloth
|
3 |
-
peft
|
4 |
-
gradio
|
5 |
scikit-learn
|
6 |
pandas
|
7 |
nltk
|
8 |
-
sentence-transformers
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
unsloth
|
|
|
|
|
4 |
scikit-learn
|
5 |
pandas
|
6 |
nltk
|
7 |
+
sentence-transformers
|
8 |
+
gradio
|
9 |
+
peft
|