Spaces:
Paused
Paused
Jasper Sands
commited on
Commit
·
e72bb6f
1
Parent(s):
53c7ecd
Add application file
Browse files- Clean Missouri Data.csv +0 -0
- app.py +120 -0
- requirements.txt +8 -0
Clean Missouri Data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import nltk
|
4 |
+
from nltk.corpus import stopwords
|
5 |
+
from sentence_transformers import SentenceTransformer, util
|
6 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
+
|
9 |
+
from unsloth import FastLanguageModel
|
10 |
+
from peft import PeftModel
|
11 |
+
from unsloth.chat_templates import get_chat_template
|
12 |
+
|
13 |
+
# Download NLTK stopwords if not already downloaded
|
14 |
+
nltk.download("stopwords")
|
15 |
+
|
16 |
+
# 1. Load model + tokenizer
|
17 |
+
base_model_name = "unsloth/Llama-3.2-3B-Instruct"
|
18 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
19 |
+
model_name=base_model_name,
|
20 |
+
max_seq_length=2048,
|
21 |
+
dtype=None,
|
22 |
+
load_in_4bit=True
|
23 |
+
)
|
24 |
+
|
25 |
+
# 2. Load the LoRA adapter
|
26 |
+
adapter_path = "jaspersands/model" # Adjust if needed
|
27 |
+
model = PeftModel.from_pretrained(model, adapter_path)
|
28 |
+
|
29 |
+
# 3. Load data
|
30 |
+
file_path = "Clean Missouri Data.csv" # Ensure this CSV is in your repo
|
31 |
+
df = pd.read_csv(file_path, encoding="MacRoman")
|
32 |
+
|
33 |
+
# 4. Define helper functions
|
34 |
+
def search_relevant_policies(query, df, top_n=10):
|
35 |
+
tfidf = TfidfVectorizer(stop_words='english')
|
36 |
+
tfidf_matrix = tfidf.fit_transform(df['Content'])
|
37 |
+
query_vector = tfidf.transform([query])
|
38 |
+
cosine_sim = cosine_similarity(query_vector, tfidf_matrix).flatten()
|
39 |
+
top_indices = cosine_sim.argsort()[-top_n:][::-1]
|
40 |
+
return df.iloc[top_indices]
|
41 |
+
|
42 |
+
def get_content_after_query(response_text, query):
|
43 |
+
query_position = response_text.lower().find(query.lower())
|
44 |
+
if query_position != -1:
|
45 |
+
res = response_text[query_position + len(query):].strip()
|
46 |
+
return res[11:]
|
47 |
+
else:
|
48 |
+
return response_text.strip()
|
49 |
+
|
50 |
+
def process_query(query, tokenizer):
|
51 |
+
# 1. Get relevant policies
|
52 |
+
relevant_policies = search_relevant_policies(query, df)
|
53 |
+
|
54 |
+
# 2. Format relevant policies
|
55 |
+
formatted_policies = []
|
56 |
+
for index, row in relevant_policies.iterrows():
|
57 |
+
formatted_policy = (
|
58 |
+
f"Title: {row['Title']}\nTerritory: {row['Territory']}\n"
|
59 |
+
f"Type: {row['Type']}\nYear: {row['Year']}\nCategory: {row['Category']}\n"
|
60 |
+
f"From: {row['From']}\nTo: {row['To']}\nContent: {row['Content']}\n"
|
61 |
+
f"Link: {row['Link to Content']}\n"
|
62 |
+
)
|
63 |
+
formatted_policies.append(formatted_policy)
|
64 |
+
relevant_policy_text = "\n\n".join(formatted_policies)
|
65 |
+
|
66 |
+
# 3. Create messages for model
|
67 |
+
messages_with_relevant_policies = [
|
68 |
+
{"role": "system", "content": relevant_policy_text},
|
69 |
+
{"role": "user", "content": query},
|
70 |
+
]
|
71 |
+
|
72 |
+
# 4. Tokenize with chat template
|
73 |
+
tokenizer = get_chat_template(tokenizer, chat_template="llama-3.1")
|
74 |
+
inputs = tokenizer.apply_chat_template(
|
75 |
+
messages_with_relevant_policies,
|
76 |
+
tokenize=True,
|
77 |
+
add_generation_prompt=True,
|
78 |
+
return_tensors="pt"
|
79 |
+
).to("cuda")
|
80 |
+
|
81 |
+
# 5. Generate output
|
82 |
+
FastLanguageModel.for_inference(model)
|
83 |
+
outputs = model.generate(
|
84 |
+
input_ids=inputs,
|
85 |
+
max_new_tokens=256,
|
86 |
+
use_cache=True,
|
87 |
+
temperature=1.5,
|
88 |
+
min_p=0.1
|
89 |
+
)
|
90 |
+
generated_response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
91 |
+
response = get_content_after_query(generated_response, query)
|
92 |
+
|
93 |
+
# 6. Rank the top 10 policies using SBERT
|
94 |
+
model_sbert = SentenceTransformer("all-MiniLM-L6-v2")
|
95 |
+
response_embedding = model_sbert.encode(generated_response, convert_to_tensor=True)
|
96 |
+
policy_embeddings = model_sbert.encode(relevant_policies['Content'].tolist(), convert_to_tensor=True)
|
97 |
+
cosine_similarities = util.cos_sim(response_embedding, policy_embeddings).flatten()
|
98 |
+
most_relevant_index = cosine_similarities.argmax().item()
|
99 |
+
most_relevant_link = relevant_policies.iloc[most_relevant_index]['Link to Content']
|
100 |
+
|
101 |
+
return {"response": response, "most_relevant_link": most_relevant_link}
|
102 |
+
|
103 |
+
# 5. Gradio interface
|
104 |
+
def answer_query(u_query):
|
105 |
+
result = process_query(u_query, tokenizer)
|
106 |
+
return result["response"], result["most_relevant_link"]
|
107 |
+
|
108 |
+
demo = gr.Interface(
|
109 |
+
fn=answer_query,
|
110 |
+
inputs="text",
|
111 |
+
outputs=[
|
112 |
+
gr.Textbox(label="System Response"),
|
113 |
+
gr.Textbox(label="Relevant Link")
|
114 |
+
],
|
115 |
+
title="Foster Questions",
|
116 |
+
description="Enter your question about the US foster system"
|
117 |
+
)
|
118 |
+
|
119 |
+
if __name__ == "__main__":
|
120 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# requirements.txt
|
2 |
+
unsloth
|
3 |
+
peft
|
4 |
+
gradio
|
5 |
+
scikit-learn
|
6 |
+
pandas
|
7 |
+
nltk
|
8 |
+
sentence-transformers
|