File size: 126,621 Bytes
9e21eef
 
 
 
 
4ddd8f4
 
8ab14fe
9e21eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b696f
9e21eef
 
 
 
 
 
 
 
31a885a
9e21eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e21eef
 
00af04f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e21eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b696f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31a885a
 
 
 
9e21eef
31a885a
 
 
 
 
 
 
 
 
 
38b696f
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
 
 
31a885a
 
 
 
 
 
4ddd8f4
 
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
 
 
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
 
31a885a
4ddd8f4
 
31a885a
 
 
 
 
 
 
 
 
38b696f
 
 
 
4ddd8f4
 
 
 
 
38b696f
 
 
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b696f
 
31a885a
 
 
 
 
38b696f
31a885a
 
38b696f
31a885a
 
 
38b696f
31a885a
 
 
38b696f
31a885a
 
 
 
 
 
 
 
38b696f
31a885a
 
38b696f
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b696f
31a885a
 
 
 
38b696f
 
31a885a
 
 
 
 
 
 
 
 
 
 
 
38b696f
 
31a885a
38b696f
 
31a885a
 
 
 
 
 
 
 
 
38b696f
31a885a
 
38b696f
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b696f
 
 
 
 
 
 
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b696f
 
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
054fb90
31a885a
 
 
 
 
4ddd8f4
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
31a885a
 
4ddd8f4
 
 
31a885a
 
 
 
054fb90
4ddd8f4
054fb90
 
4ddd8f4
31a885a
054fb90
31a885a
 
 
 
 
 
 
 
 
4ddd8f4
31a885a
 
 
 
 
 
 
 
38b696f
31a885a
 
054fb90
31a885a
 
 
 
 
 
 
 
 
 
054fb90
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
31a885a
054fb90
 
 
31a885a
 
 
 
 
 
 
 
 
 
054fb90
 
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
054fb90
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
054fb90
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
31a885a
054fb90
31a885a
 
 
 
 
054fb90
 
4ddd8f4
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
054fb90
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
054fb90
31a885a
054fb90
4ddd8f4
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
054fb90
 
38b696f
054fb90
 
 
31a885a
 
 
 
 
 
 
 
054fb90
31a885a
 
 
 
 
 
 
 
054fb90
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b696f
4ddd8f4
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
 
db4c558
31a885a
4ddd8f4
31a885a
 
 
4ddd8f4
31a885a
4ddd8f4
 
 
 
 
 
31a885a
4ddd8f4
054fb90
4ddd8f4
054fb90
4ddd8f4
 
 
31a885a
 
054fb90
31a885a
 
 
 
 
 
4ddd8f4
 
31a885a
 
 
 
054fb90
31a885a
 
 
054fb90
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
054fb90
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
054fb90
 
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
054fb90
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
31a885a
4ddd8f4
31a885a
4ddd8f4
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
 
 
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db4c558
 
 
 
 
 
 
 
 
38b696f
db4c558
 
 
4ddd8f4
 
 
 
173048d
 
 
 
 
4ddd8f4
 
 
 
 
054fb90
 
4ddd8f4
173048d
 
 
 
054fb90
 
 
 
173048d
054fb90
 
 
 
173048d
 
 
054fb90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31a885a
 
 
 
 
 
054fb90
 
173048d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
054fb90
173048d
 
 
 
 
 
 
054fb90
173048d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
054fb90
4ddd8f4
 
054fb90
173048d
 
 
 
4ddd8f4
 
173048d
 
4ddd8f4
054fb90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31a885a
 
 
 
 
 
054fb90
 
31a885a
 
 
 
 
054fb90
4ddd8f4
 
173048d
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
 
 
054fb90
 
 
 
 
 
 
173048d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
054fb90
31a885a
054fb90
31a885a
054fb90
 
 
 
31a885a
054fb90
 
 
 
31a885a
054fb90
 
 
4ddd8f4
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173048d
 
 
 
4ddd8f4
 
 
 
 
 
 
054fb90
 
 
31a885a
9e21eef
 
 
 
 
 
 
 
 
4ddd8f4
 
054fb90
 
 
 
 
 
31a885a
 
 
 
 
 
 
 
4ddd8f4
173048d
 
9e21eef
 
 
173048d
9e21eef
 
4ddd8f4
c6a60af
 
d6fb232
 
 
 
c6a60af
4ddd8f4
 
 
 
31a885a
4ddd8f4
 
 
 
 
 
 
 
 
 
 
054fb90
 
 
 
 
 
31a885a
 
 
 
 
 
 
 
054fb90
173048d
 
054fb90
 
 
 
4ddd8f4
 
 
 
 
 
 
 
173048d
 
9e21eef
c6a60af
 
d6fb232
 
 
 
c6a60af
9e21eef
 
 
31a885a
 
 
 
 
d6fb232
 
 
 
 
 
31a885a
9e21eef
31a885a
 
 
 
 
 
 
d6fb232
31a885a
d6fb232
31a885a
 
 
 
 
 
9e21eef
 
31a885a
 
9e21eef
d6fb232
 
 
 
 
 
 
 
 
 
 
 
 
 
31a885a
 
4ddd8f4
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd8f4
c6a60af
 
 
 
 
 
31a885a
c6a60af
 
 
 
 
 
 
 
 
 
31a885a
e922466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173048d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e922466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b696f
9e21eef
 
31a885a
9e21eef
4af3315
9e21eef
 
31a885a
9e21eef
 
 
31a885a
9e21eef
00af04f
 
 
 
054fb90
00af04f
9e21eef
00af04f
9e21eef
31a885a
9e21eef
00af04f
 
 
 
 
 
 
9e21eef
31a885a
9e21eef
00af04f
 
 
 
 
38b696f
 
 
 
db4c558
 
38b696f
9e21eef
38b696f
 
173048d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b696f
 
 
 
 
31a885a
4ddd8f4
00af04f
 
e922466
 
 
 
 
 
 
 
 
 
 
 
 
 
00af04f
 
 
e922466
 
 
9e21eef
31a885a
 
 
 
e922466
 
 
31a885a
 
 
 
9e21eef
 
00af04f
 
 
9e21eef
31a885a
9e21eef
 
31a885a
9e21eef
 
31a885a
9e21eef
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e21eef
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e922466
 
 
 
9e21eef
31a885a
9e21eef
 
e922466
9e21eef
 
31a885a
 
9e21eef
00af04f
31a885a
e922466
31a885a
e922466
31a885a
 
 
 
 
 
 
 
 
 
e922466
 
 
 
31a885a
 
 
 
 
 
 
c6a60af
 
 
 
 
 
 
 
 
e922466
 
 
 
00af04f
9e21eef
00af04f
 
 
 
 
 
38b696f
 
 
 
 
 
 
 
 
4ddd8f4
 
 
 
 
 
 
c6a60af
 
 
 
 
 
 
 
 
 
 
4ddd8f4
38b696f
 
 
 
00af04f
 
 
9e21eef
4af3315
00af04f
31a885a
00af04f
 
 
 
4af3315
e922466
 
31a885a
9e21eef
00af04f
 
e922466
9e21eef
e922466
9e21eef
 
 
e922466
9e21eef
 
31a885a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e21eef
 
38b696f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
import os
import io
import gradio as gr
import torch
import numpy as np
import re
import pronouncing  # Add this to requirements.txt for syllable counting
import functools  # Add this for lru_cache functionality
from transformers import (
    AutoModelForAudioClassification,
    AutoFeatureExtractor,
    AutoTokenizer,
    pipeline,
    AutoModelForCausalLM,
    BitsAndBytesConfig
)
from huggingface_hub import login
from utils import (
    load_audio,
    extract_audio_duration,
    extract_mfcc_features,
    calculate_lyrics_length,
    format_genre_results,
    ensure_cuda_availability,
    preprocess_audio_for_model
)
from emotionanalysis import MusicAnalyzer
import librosa

# Login to Hugging Face Hub if token is provided
if "HF_TOKEN" in os.environ:
    login(token=os.environ["HF_TOKEN"])

# Constants
GENRE_MODEL_NAME = "dima806/music_genres_classification"
MUSIC_DETECTION_MODEL = "MIT/ast-finetuned-audioset-10-10-0.4593"
LLM_MODEL_NAME = "Qwen/Qwen3-14B"
SAMPLE_RATE = 22050  # Standard sample rate for audio processing

# Check CUDA availability (for informational purposes)
CUDA_AVAILABLE = ensure_cuda_availability()

# Create music detection pipeline
print(f"Loading music detection model: {MUSIC_DETECTION_MODEL}")
try:
    music_detector = pipeline(
        "audio-classification",
        model=MUSIC_DETECTION_MODEL,
        device=0 if CUDA_AVAILABLE else -1
    )
    print("Successfully loaded music detection pipeline")
except Exception as e:
    print(f"Error creating music detection pipeline: {str(e)}")
    # Fallback to manual loading
    try:
        music_processor = AutoFeatureExtractor.from_pretrained(MUSIC_DETECTION_MODEL)
        music_model = AutoModelForAudioClassification.from_pretrained(MUSIC_DETECTION_MODEL)
        print("Successfully loaded music detection model and feature extractor")
    except Exception as e2:
        print(f"Error loading music detection model components: {str(e2)}")
        raise RuntimeError(f"Could not load music detection model: {str(e2)}")

# Create genre classification pipeline
print(f"Loading audio classification model: {GENRE_MODEL_NAME}")
try:
    genre_classifier = pipeline(
        "audio-classification",
        model=GENRE_MODEL_NAME,
        device=0 if CUDA_AVAILABLE else -1
    )
    print("Successfully loaded audio classification pipeline")
except Exception as e:
    print(f"Error creating pipeline: {str(e)}")
    # Fallback to manual loading
    try:
        genre_processor = AutoFeatureExtractor.from_pretrained(GENRE_MODEL_NAME)
        genre_model = AutoModelForAudioClassification.from_pretrained(GENRE_MODEL_NAME)
        print("Successfully loaded audio classification model and feature extractor")
    except Exception as e2:
        print(f"Error loading model components: {str(e2)}")
        raise RuntimeError(f"Could not load genre classification model: {str(e2)}")

# Load LLM with appropriate quantization for T4 GPU
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.float16,
)

llm_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
llm_model = AutoModelForCausalLM.from_pretrained(
    LLM_MODEL_NAME,
    device_map="auto",
    quantization_config=bnb_config,
    torch_dtype=torch.float16,
)

# Create LLM pipeline
llm_pipeline = pipeline(
    "text-generation",
    model=llm_model,
    tokenizer=llm_tokenizer,
    max_new_tokens=512,
)

# Initialize music emotion analyzer
music_analyzer = MusicAnalyzer()

# New function: Count syllables in text
def count_syllables(text):
    """Count syllables in a given text using the pronouncing library."""
    words = re.findall(r'\b[a-zA-Z]+\b', text.lower())
    syllable_count = 0
    
    for word in words:
        # Get pronunciations for the word
        pronunciations = pronouncing.phones_for_word(word)
        if pronunciations:
            # Count syllables in the first pronunciation
            syllable_count += pronouncing.syllable_count(pronunciations[0])
        else:
            # Fallback: estimate syllables based on vowel groups
            vowels = "aeiouy"
            count = 0
            prev_is_vowel = False
            
            for char in word:
                is_vowel = char.lower() in vowels
                if is_vowel and not prev_is_vowel:
                    count += 1
                prev_is_vowel = is_vowel
                
            if word.endswith('e'):
                count -= 1
            if word.endswith('le') and len(word) > 2 and word[-3] not in vowels:
                count += 1
            if count == 0:
                count = 1
                
            syllable_count += count
    
    return syllable_count

def extract_audio_features(audio_file):
    """Extract audio features from an audio file."""
    try:
        # Load the audio file using utility function
        y, sr = load_audio(audio_file, SAMPLE_RATE)
        
        if y is None or sr is None:
            raise ValueError("Failed to load audio data")
        
        # Get audio duration in seconds
        duration = extract_audio_duration(y, sr)
        
        # Extract MFCCs for genre classification (may not be needed with the pipeline)
        mfccs_mean = extract_mfcc_features(y, sr, n_mfcc=20)
        
        return {
            "features": mfccs_mean,
            "duration": duration,
            "waveform": y,
            "sample_rate": sr,
            "path": audio_file  # Keep path for the pipeline
        }
    except Exception as e:
        print(f"Error extracting audio features: {str(e)}")
        raise ValueError(f"Failed to extract audio features: {str(e)}")

def classify_genre(audio_data):
    """Classify the genre of the audio using the loaded model."""
    try:
        # First attempt: Try using the pipeline if available
        if 'genre_classifier' in globals():
            results = genre_classifier(audio_data["path"])
            # Transform pipeline results to our expected format
            top_genres = [(result["label"], result["score"]) for result in results[:3]]
            return top_genres
        
        # Second attempt: Use manually loaded model components
        elif 'genre_processor' in globals() and 'genre_model' in globals():
            # Process audio input with feature extractor
            inputs = genre_processor(
                audio_data["waveform"], 
                sampling_rate=audio_data["sample_rate"], 
                return_tensors="pt"
            )
            
            with torch.no_grad():
                outputs = genre_model(**inputs)
                predictions = outputs.logits.softmax(dim=-1)
            
            # Get the top 3 genres
            values, indices = torch.topk(predictions, 3)
            
            # Map indices to genre labels
            genre_labels = genre_model.config.id2label
            
            top_genres = []
            for i, (value, index) in enumerate(zip(values[0], indices[0])):
                genre = genre_labels[index.item()]
                confidence = value.item()
                top_genres.append((genre, confidence))
            
            return top_genres
        
        else:
            raise ValueError("No genre classification model available")
            
    except Exception as e:
        print(f"Error in genre classification: {str(e)}")
        # Fallback: return a default genre if everything fails
        return [("rock", 1.0)]

def detect_music(audio_data):
    """Detect if the audio is music using the MIT AST model."""
    try:
        # First attempt: Try using the pipeline if available
        if 'music_detector' in globals():
            results = music_detector(audio_data["path"])
            # Look for music-related classes in the results
            music_confidence = 0.0
            for result in results:
                label = result["label"].lower()
                if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]):
                    music_confidence = max(music_confidence, result["score"])
            return music_confidence >= 0.2, results
        
        # Second attempt: Use manually loaded model components
        elif 'music_processor' in globals() and 'music_model' in globals():
            # Process audio input with feature extractor
            inputs = music_processor(
                audio_data["waveform"], 
                sampling_rate=audio_data["sample_rate"], 
                return_tensors="pt"
            )
            
            with torch.no_grad():
                outputs = music_model(**inputs)
                predictions = outputs.logits.softmax(dim=-1)
            
            # Get the top predictions
            values, indices = torch.topk(predictions, 5)
            
            # Map indices to labels
            labels = music_model.config.id2label
            
            # Check for music-related classes
            music_confidence = 0.0
            results = []
            
            for i, (value, index) in enumerate(zip(values[0], indices[0])):
                label = labels[index.item()].lower()
                score = value.item()
                results.append({"label": label, "score": score})
                
                if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]):
                    music_confidence = max(music_confidence, score)
            
            return music_confidence >= 0.2, results
            
        else:
            raise ValueError("No music detection model available")
            
    except Exception as e:
        print(f"Error in music detection: {str(e)}")
        return False, []

def detect_beats(y, sr):
    """Enhanced beat detection with adaptive threshold analysis and improved time signature detection."""
    # STEP 1: Improved pre-processing with robustness for quiet sections
    # Apply a small floor to avoid division-by-zero issues
    y = np.clip(y, 1e-10, None)  # Prevent extreme quiet sections from causing NaN
    
    # Separate harmonic and percussive components
    y_harmonic, y_percussive = librosa.effects.hpss(y)
    
    # Generate multiple onset envelopes with smoothing for stability
    onset_env_full = librosa.onset.onset_strength(y=y, sr=sr)
    onset_env_perc = librosa.onset.onset_strength(y=y_percussive, sr=sr)
    
    # Apply small smoothing to handle quiet sections
    onset_env_full = np.maximum(onset_env_full, 1e-6)  # Minimum threshold to avoid NaN
    onset_env_perc = np.maximum(onset_env_perc, 1e-6)
    
    # Create weighted combination
    combined_onset = onset_env_full * 0.3 + onset_env_perc * 0.7
    
    # STEP 2: Multi-strategy tempo and beat detection
    tempo_candidates = []
    beat_candidates = []
    
    # Strategy 1: Standard detection
    tempo1, beats1 = librosa.beat.beat_track(
        onset_envelope=combined_onset, 
        sr=sr,
        tightness=100  # More sensitive tracking
    )
    tempo_candidates.append(tempo1)
    beat_candidates.append(beats1)
    
    # Strategy 2: Try with different tempo range for complex signatures
    tempo2, beats2 = librosa.beat.beat_track(
        onset_envelope=combined_onset,
        sr=sr,
        tightness=100,
        start_bpm=60,  # Lower starting BPM helps find different time signatures
        std_bpm=20     # Allow wider variations
    )
    tempo_candidates.append(tempo2)
    beat_candidates.append(beats2)
    
    # Select the best strategy based on consistency
    beat_consistency = []
    for beats in beat_candidates:
        if len(beats) <= 1:
            beat_consistency.append(0)
            continue
            
        times = librosa.frames_to_time(beats, sr=sr)
        intervals = np.diff(times)
        
        # More consistent beats have lower variance in intervals
        if np.mean(intervals) > 0:
            consistency = 1.0 / (1.0 + np.std(intervals)/np.mean(intervals))
            beat_consistency.append(consistency)
        else:
            beat_consistency.append(0)
    
    best_idx = np.argmax(beat_consistency) if beat_consistency else 0
    tempo = tempo_candidates[best_idx]
    beat_frames = beat_candidates[best_idx]
    
    # STEP 3: Performance optimization with vectorized operations
    beat_times = librosa.frames_to_time(beat_frames, sr=sr)
    
    # Vectorized extraction of beat strengths instead of loop
    beat_strengths = []
    if len(beat_frames) > 0:
        # Filter out beat frames that exceed the onset envelope length
        valid_frames = [frame for frame in beat_frames if frame < len(combined_onset)]
        if valid_frames:
            # Vectorized extraction of valid beat strengths
            beat_strengths = combined_onset[valid_frames].tolist()
            
            # Handle any remaining beats
            avg_strength = np.mean(beat_strengths) if beat_strengths else 1.0
            beat_strengths.extend([avg_strength] * (len(beat_times) - len(beat_strengths)))
        else:
            beat_strengths = [1.0] * len(beat_times)
    else:
        beat_strengths = [1.0] * len(beat_times)
    
    # STEP 4: Calculate intervals between beats
    intervals = np.diff(beat_times).tolist() if len(beat_times) > 1 else []
    
    # STEP 5: Improved time signature detection for various patterns
    # Start with default assumption
    time_signature = 4
    
    if len(beat_strengths) > 8:
        # Use autocorrelation to find periodicity in beat strengths
        if len(beat_strengths) > 4:
            # Normalize beat strengths for better pattern detection
            norm_strengths = np.array(beat_strengths)
            if np.max(norm_strengths) > 0:
                norm_strengths = norm_strengths / np.max(norm_strengths)
            
            # Compute autocorrelation to find periodic patterns (N)
            ac = librosa.autocorrelate(norm_strengths, max_size=len(norm_strengths)//2)
            
            # Find peaks in autocorrelation (indicates periodicity)
            if len(ac) > 3:  # Need enough data for peak picking
                # Find peaks after lag 0
                peaks = librosa.util.peak_pick(ac[1:], pre_max=1, post_max=1, pre_avg=1, post_avg=1, delta=0.1, wait=1)
                peaks = peaks + 1  # Adjust for the removed lag 0
                
                if len(peaks) > 0:
                    # Get the first significant peak position (cycle length N)
                    N = peaks[0]
                    
                    # Map common cycle lengths to time signatures
                    if 2 <= N <= 3:
                        time_signature = N  # Direct mapping for simple cases
                    elif N == 6:
                        time_signature = 3  # Could be 6/8 or 3/4 with subdivisions
                    elif N == 8:
                        time_signature = 4  # Could be 4/4 with subdivisions
                    elif N == 5 or N == 7:
                        time_signature = N  # Odd time signatures like 5/4 or 7/8
                    # Otherwise, keep default 4
        
        # Use adaptive thresholds for pattern detection instead of fixed values
        if len(beat_strengths) > 3:
            # Calculate z-scores to identify statistically significant strong beats
            strengths_array = np.array(beat_strengths)
            mean_strength = np.mean(strengths_array)
            std_strength = np.std(strengths_array)
            
            if std_strength > 0:
                z_scores = (strengths_array - mean_strength) / std_strength
                
                # Count beats with z-score > 1 in groups of 3 (for 3/4 time)
                strong_beat_pattern = []
                for i in range(0, len(z_scores) - 2, 3):
                    # First beat should be significantly stronger (z > 1)
                    # Second and third beats should be weaker
                    if z_scores[i] > 1 and z_scores[i+1] < 0.5 and z_scores[i+2] < 0.5:
                        strong_beat_pattern.append(1)
                    else:
                        strong_beat_pattern.append(0)
                
                # Check if we have a clear 3/4 pattern
                if strong_beat_pattern and len(strong_beat_pattern) >= 3:
                    three_pattern_probability = sum(strong_beat_pattern) / len(strong_beat_pattern)
                    if three_pattern_probability > 0.6:
                        time_signature = 3
    
    # STEP 6: Enhanced phrase detection with adaptive thresholds
    phrases = []
    current_phrase = []
    
    if len(beat_times) > 0:
        # Calculate adaptive thresholds using percentiles instead of fixed ratios
        if len(beat_strengths) > 4:
            # Define thresholds based on distribution rather than fixed values
            strong_threshold = np.percentile(beat_strengths, 75)  # Top 25% are "strong" beats
            # For gaps, calculate significant deviation using z-scores if we have intervals
            if intervals:
                mean_interval = np.mean(intervals)
                std_interval = np.std(intervals)
                # A significant gap is > 1.5 standard deviations above mean
                significant_gap = mean_interval + (1.5 * std_interval) if std_interval > 0 else mean_interval * 1.3
            else:
                significant_gap = 0
        else:
            # Fallback for limited data
            strong_threshold = np.max(beat_strengths) * 0.8 if beat_strengths else 1.0
            significant_gap = 0
    
        # Identify phrase boundaries
        for i in range(len(beat_times)):
            current_phrase.append(i)
            
            # Check for phrase boundary conditions
            if i < len(beat_times) - 1:
                # Strong beat coming up (using adaptive threshold)
                is_stronger_next = False
                if i < len(beat_strengths) - 1:
                    is_stronger_next = beat_strengths[i+1] > strong_threshold and beat_strengths[i+1] > beat_strengths[i] * 1.1
                
                # Significant gap (using adaptive threshold)
                is_longer_gap = False
                if i < len(beat_times) - 1 and intervals and i < len(intervals):
                    is_longer_gap = intervals[i] > significant_gap
                
                # Measure boundary based on time signature
                is_measure_boundary = (i + 1) % time_signature == 0 and i > 0
                
                # Combined decision for phrase boundary
                if ((is_stronger_next or is_longer_gap) and len(current_phrase) >= 2) or \
                   (is_measure_boundary and len(current_phrase) >= time_signature):
                    phrases.append(current_phrase)
                    current_phrase = []
    
    # Add the last phrase if not empty
    if current_phrase and len(current_phrase) >= 2:
        phrases.append(current_phrase)
    
    # Ensure we have at least one phrase
    if not phrases and len(beat_times) >= 2:
        # Default to grouping by measures based on detected time signature
        for i in range(0, len(beat_times), time_signature):
            end = min(i + time_signature, len(beat_times))
            if end - i >= 2:  # Ensure at least 2 beats per phrase
                phrases.append(list(range(i, end)))
    
    # Return in the original format for compatibility
    return {
        "tempo": tempo,
        "beat_frames": beat_frames,
        "beat_times": beat_times,
        "beat_count": len(beat_times),
        "beat_strengths": beat_strengths,
        "intervals": intervals,
        "time_signature": time_signature,
        "phrases": phrases
    }

def detect_sections(y, sr):
    """
    Advanced detection of musical sections with adaptive segmentation and improved classification.
    
    Parameters:
        y: Audio time series
        sr: Sample rate
    
    Returns:
        A list of section dictionaries with type, start time, end time, and duration
    """
    # Step 1: Extract rich feature set for comprehensive analysis
    # ----------------------------------------------------------------------
    hop_length = 512  # Common hop length for feature extraction
    
    # Spectral features
    S = np.abs(librosa.stft(y, hop_length=hop_length))
    contrast = librosa.feature.spectral_contrast(S=S, sr=sr)
    
    # Harmonic features with CQT-based chroma (better for harmonic analysis)
    chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length)
    
    # Timbral features
    mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13, hop_length=hop_length)
    
    # Energy features
    rms = librosa.feature.rms(y=y, hop_length=hop_length)
    
    # Harmonic-percussive source separation for better rhythm analysis
    y_harmonic, y_percussive = librosa.effects.hpss(y)
    percussive_rms = librosa.feature.rms(y=y_percussive, hop_length=hop_length)
    
    # Step 2: Adaptive determination of segment count based on song complexity
    # ----------------------------------------------------------------------
    duration = librosa.get_duration(y=y, sr=sr)
    
    # Feature preparation for adaptive segmentation
    # Stack features with proper normalization (addressing the scale issue)
    feature_stack = np.vstack([
        librosa.util.normalize(contrast),
        librosa.util.normalize(chroma),
        librosa.util.normalize(mfcc),
        librosa.util.normalize(rms)
    ])
    
    # Transpose to get time as first dimension
    feature_matrix = feature_stack.T
    
    # Step 3: Feature fusion using dimensionality reduction (addressing simple summation issue)
    # ----------------------------------------------------------------------
    
    # Apply PCA to reduce dimensionality while preserving relationships
    from sklearn.decomposition import PCA
    
    # Handle very short audio files
    n_components = min(8, feature_matrix.shape[0], feature_matrix.shape[1])
    
    if feature_matrix.shape[0] > n_components and feature_matrix.shape[1] > 0:
        try:
            pca = PCA(n_components=n_components)
            reduced_features = pca.fit_transform(feature_matrix)
        except Exception as e:
            print(f"PCA failed, falling back to original features: {e}")
            # Fallback to simpler approach if PCA fails
            reduced_features = feature_matrix
    else:
        # Not enough data for PCA
        reduced_features = feature_matrix
    
    # Step 4: Adaptive determination of optimal segment count
    # ----------------------------------------------------------------------
    
    # Initialize range of segment counts to try
    min_segments = max(2, int(duration / 60))  # At least 2 segments, roughly 1 per minute
    max_segments = min(10, int(duration / 20))  # At most 10 segments, roughly 1 per 20 seconds
    
    # Ensure reasonable bounds
    min_segments = max(2, min(min_segments, 4))
    max_segments = max(min_segments + 1, min(max_segments, 8))
    
    # Try different segment counts and evaluate with silhouette score
    best_segments = min_segments
    best_score = -1
    
    from sklearn.metrics import silhouette_score
    from sklearn.cluster import AgglomerativeClustering
    
    # Only do this analysis if we have enough data
    if reduced_features.shape[0] > max_segments:
        for n_segments in range(min_segments, max_segments + 1):
            try:
                # Perform agglomerative clustering
                clustering = AgglomerativeClustering(n_clusters=n_segments)
                labels = clustering.fit_predict(reduced_features)
                
                # Calculate silhouette score if we have enough samples
                if len(np.unique(labels)) > 1 and len(labels) > n_segments + 1:
                    score = silhouette_score(reduced_features, labels)
                    
                    if score > best_score:
                        best_score = score
                        best_segments = n_segments
            except Exception as e:
                print(f"Clustering with {n_segments} segments failed: {e}")
                continue
    
    # Use the optimal segment count for final segmentation
    n_segments = best_segments
    
    # Step 5: Final segmentation using the optimal segment count
    # ----------------------------------------------------------------------
    
    # Method 1: Use agglomerative clustering on the reduced features
    try:
        clustering = AgglomerativeClustering(n_clusters=n_segments)
        labels = clustering.fit_predict(reduced_features)
        
        # Convert cluster labels to boundaries by finding where labels change
        boundaries = [0]  # Start with the beginning
        
        for i in range(1, len(labels)):
            if labels[i] != labels[i-1]:
                boundaries.append(i)
        
        boundaries.append(len(labels))  # Add the end
        
        # Convert to frames
        bounds_frames = np.array(boundaries)
        
    except Exception as e:
        print(f"Final clustering failed: {e}")
        # Fallback to librosa's agglomerative clustering on original features
        bounds_frames = librosa.segment.agglomerative(feature_stack, n_segments)
    
    # Step 6: Detect harmonic changes for better bridge identification
    # ----------------------------------------------------------------------
    
    # Calculate tonal centroids to identify key changes
    tonnetz = librosa.feature.tonnetz(y=y_harmonic, sr=sr)
    
    # Look for significant changes in harmonic content
    harmonic_changes = []
    
    if tonnetz.shape[1] > 1:
        tonnetz_diff = np.sum(np.abs(np.diff(tonnetz, axis=1)), axis=0)
        # Normalize
        if np.max(tonnetz_diff) > 0:
            tonnetz_diff = tonnetz_diff / np.max(tonnetz_diff)
        
        # Identify significant harmonic changes (potential bridges or section changes)
        threshold = np.percentile(tonnetz_diff, 90)  # Top 10% most significant changes
        for i in range(len(tonnetz_diff)):
            if tonnetz_diff[i] > threshold:
                harmonic_changes.append(i)
    
    # Step 7: Convert boundaries to time and create sections
    # ----------------------------------------------------------------------
    bounds_times = librosa.frames_to_time(bounds_frames, sr=sr, hop_length=hop_length)
    
    # Create sections from the boundaries
    sections = []
    
    for i in range(len(bounds_times) - 1):
        start = bounds_times[i]
        end = bounds_times[i+1]
        duration = end - start
        
        # Skip extremely short sections
        if duration < 4 and i > 0 and i < len(bounds_times) - 2:
            continue
        
        # Step 8: Section type classification with improved musical features
        # ----------------------------------------------------------------------
        
        # Get indices for this section
        start_idx = bounds_frames[i]
        end_idx = bounds_frames[i+1]
        
        # Basic section type based on position
        if i == 0:
            section_type = "intro"
        elif i == len(bounds_times) - 2:
            section_type = "outro"
        else:
            # Default to alternating verse/chorus
            section_type = "chorus" if i % 2 == 1 else "verse"
        
        # Only analyze characteristics if we have enough frames
        if end_idx > start_idx:
            # Calculate musical characteristics for this section
            
            # 1. Energy profile
            energy = np.mean(rms[0, start_idx:end_idx])
            
            # 2. Rhythm intensity (percussive content)
            rhythm_intensity = np.mean(percussive_rms[0, start_idx:end_idx])
            
            # 3. Harmonic complexity
            if chroma.shape[1] > 0:
                chroma_var = np.var(chroma[:, start_idx:end_idx])
            else:
                chroma_var = 0
            
            # 4. Timbral characteristics
            if mfcc.shape[1] > 0:
                mfcc_mean = np.mean(mfcc[:, start_idx:end_idx], axis=1)
                mfcc_var = np.var(mfcc[:, start_idx:end_idx], axis=1)
            else:
                mfcc_mean = np.zeros(mfcc.shape[0])
                mfcc_var = np.zeros(mfcc.shape[0])
            
            # 5. Check for harmonic changes within this section (for bridge detection)
            has_harmonic_change = False
            for change_idx in harmonic_changes:
                if start_idx <= change_idx < end_idx:
                    has_harmonic_change = True
                    break
            
            # Calculate relative metrics by comparing to the entire song
            relative_energy = energy / np.mean(rms)
            relative_rhythm = rhythm_intensity / np.mean(percussive_rms)
            
            # Improved section type classification:
            
            # Chorus: High energy, strong rhythm, less harmonic variation
            if (relative_energy > 1.1 and relative_rhythm > 1.1 and 
                section_type != "intro" and section_type != "outro"):
                section_type = "chorus"
            
            # Verse: Moderate energy, moderate rhythm, more harmonic variation
            elif (0.8 <= relative_energy <= 1.1 and chroma_var > np.mean(np.var(chroma, axis=1)) and
                  section_type != "intro" and section_type != "outro"):
                section_type = "verse"
            
            # Bridge: Often has harmonic changes, energy drop, or unique timbral characteristics
            if (section_type not in ["intro", "outro"] and 
                (has_harmonic_change or 
                 (0.5 <= relative_energy <= 0.9 and duration < 30) or
                 np.any(mfcc_var > np.percentile(np.var(mfcc, axis=1), 75)))):
                section_type = "bridge"
        
        # Add section to the list
        sections.append({
            "type": section_type,
            "start": start,
            "end": end,
            "duration": duration
        })
    
    # Post-processing: Ensure reasonable section sequence and durations
    for i in range(1, len(sections) - 1):
        # Check for unreasonably short sections and merge them
        if sections[i]["duration"] < 8 and sections[i]["type"] not in ["intro", "outro", "bridge"]:
            # Either merge with previous or next section based on similarity
            prev_type = sections[i-1]["type"]
            next_type = sections[i+1]["type"] if i+1 < len(sections) else "outro"
            
            # Default to merging with the previous section
            sections[i]["type"] = prev_type
    
    # Filter out any remaining extremely short sections
    sections = [s for s in sections if s["duration"] >= 5 or 
                s["type"] == "intro" or s["type"] == "outro"]
    
    return sections

def create_flexible_syllable_templates(beats_info, genre=None, phrase_mode='default'):
    """
    Create enhanced syllable templates based on beat patterns with improved musical intelligence.
    
    Parameters:
        beats_info: Dictionary containing beat analysis data
        genre: Optional genre to influence template creation
        phrase_mode: 'default' uses provided phrases, 'auto' forces recalculation
        
    Returns:
        String of syllable templates with embedded strength values and flexible timing
    """
    import numpy as np
    from sklearn.cluster import KMeans
    
    # Extract basic beat information
    beat_times = beats_info.get("beat_times", [])
    beat_strengths = beats_info.get("beat_strengths", [1.0] * len(beat_times))
    tempo = beats_info.get("tempo", 120)
    time_signature = beats_info.get("time_signature", 4)
    
    # Early return for insufficient data
    if len(beat_times) < 2:
        return "S(1.0):1-w(0.5):1|S(1.0):1-w(0.5):1"  # Default fallback pattern
    
    # Step 1: Adaptive thresholding using k-means clustering
    # ----------------------------------------------------------------------
    if len(beat_strengths) >= 6:  # Need enough data points for clustering
        # Reshape for k-means
        X = np.array(beat_strengths).reshape(-1, 1)
        
        # Use k-means with 3 clusters for Strong, Medium, Weak classification
        kmeans = KMeans(n_clusters=3, random_state=0, n_init=10).fit(X)
        
        # Find the centroid values and sort them
        centroids = sorted([float(c[0]) for c in kmeans.cluster_centers_])
        
        # Map to thresholds (using the midpoints between centroids)
        if len(centroids) >= 3:
            medium_threshold = (centroids[0] + centroids[1]) / 2
            strong_threshold = (centroids[1] + centroids[2]) / 2
        else:
            # Fallback if clustering doesn't work well
            medium_threshold = np.percentile(beat_strengths, 33)
            strong_threshold = np.percentile(beat_strengths, 66)
    else:
        # For limited data, use percentile-based approach
        medium_threshold = np.percentile(beat_strengths, 33)
        strong_threshold = np.percentile(beat_strengths, 66)
    
    # Step 2: Create or refine phrases based on mode
    # ----------------------------------------------------------------------
    phrases = beats_info.get("phrases", [])
    
    if phrase_mode == 'auto' or not phrases:
        # Create phrases based on time signature and beat strengths
        phrases = []
        current_phrase = []
        
        for i in range(len(beat_times)):
            current_phrase.append(i)
            
            # Check for natural phrase endings
            if (i + 1) % time_signature == 0 or i == len(beat_times) - 1:
                if len(current_phrase) >= 2:  # Ensure minimum phrase length
                    phrases.append(current_phrase)
                    current_phrase = []
        
        # Add any remaining beats
        if current_phrase and len(current_phrase) >= 2:
            phrases.append(current_phrase)
    
    # Step 3: Calculate continuous tempo-to-syllable mapping function
    # ----------------------------------------------------------------------
    def tempo_to_syllable_base(tempo):
        """Continuous function mapping tempo to syllable base count"""
        # Sigmoid-like function that smoothly transitions between syllable counts
        if tempo > 180:
            return 1.0
        elif tempo > 140: 
            return 1.0 + (180 - tempo) * 0.02  # Gradual increase 1.0 → 1.8
        elif tempo > 100:
            return 1.8 + (140 - tempo) * 0.01  # Gradual increase 1.8 → 2.2
        elif tempo > 70:
            return 2.2 + (100 - tempo) * 0.02  # Gradual increase 2.2 → 2.8
        else:
            return 2.8 + max(0, (70 - tempo) * 0.04)  # Continue increasing for very slow tempos
    
    # Step 4: Generate enhanced templates with flexible timing
    # ----------------------------------------------------------------------
    syllable_templates = []
    
    for phrase in phrases:
        # Skip empty phrases
        if not phrase:
            continue
        
        # Extract beat strengths for this phrase
        phrase_strengths = [beat_strengths[i] for i in phrase if i < len(beat_strengths)]
        if not phrase_strengths:
            phrase_strengths = [1.0] * len(phrase)
        
        # Apply adaptive thresholding for stress pattern detection
        stress_pattern = []
        for i, strength in enumerate(phrase_strengths):
            # Consider both strength and metrical position
            metrical_position = i % time_signature
            
            # Apply positional boost for strong metrical positions
            position_boost = 0.15 if metrical_position == 0 else 0
            # Secondary stress on beat 3 in 4/4 time
            if time_signature == 4 and metrical_position == 2:
                position_boost = 0.08
                
            effective_strength = strength + position_boost
            
            if effective_strength >= strong_threshold:
                stress_pattern.append(("S", effective_strength))  # Strong beat with strength
            elif effective_strength >= medium_threshold:
                stress_pattern.append(("m", effective_strength))  # Medium beat with strength
            else:
                stress_pattern.append(("w", effective_strength))  # Weak beat with strength
        
        # Step 5: Calculate syllable counts using continuous function
        # ----------------------------------------------------------------------
        detailed_template = []
        
        for i, (stress_type, strength) in enumerate(stress_pattern):
            # Get base syllable count from tempo
            base_syllables = tempo_to_syllable_base(tempo)
            
            # Adjust based on stress type
            if stress_type == "S":
                syllable_factor = 1.2  # More syllables for strong beats
            elif stress_type == "m":
                syllable_factor = 1.0  # Normal for medium beats
            else:
                syllable_factor = 0.8  # Fewer for weak beats
            
            # Apply genre-specific adjustments
            genre_factor = 1.0
            if genre:
                genre = genre.lower()
                if any(term in genre for term in ["rap", "hip hop", "hip-hop"]):
                    genre_factor = 1.4  # Much higher syllable density for rap
                elif any(term in genre for term in ["folk", "country", "ballad"]):
                    genre_factor = 0.8  # Lower density for folk styles
            
            # Calculate adjusted syllable count
            raw_count = base_syllables * syllable_factor * genre_factor
            
            # Allow for more flexible syllable counts with non-integer values
            # Round to multiples of 0.5 for half-syllable precision
            rounded_count = round(raw_count * 2) / 2
            
            # Limit to reasonable range (0.5 to 4)
            syllable_count = max(0.5, min(4, rounded_count))
            
            # Format with embedded strength value for reversibility
            # Convert strength to 2-decimal precision percentage
            strength_pct = int(strength * 100) / 100
            detailed_template.append(f"{stress_type}({strength_pct}):{syllable_count}")
        
        # Join beat templates for this phrase
        phrase_template = "-".join(detailed_template)
        syllable_templates.append(phrase_template)
    
    # Step 6: Ensure valid output with reasonable defaults
    # ----------------------------------------------------------------------
    if not syllable_templates:
        # Create a sensible default based on time signature
        if time_signature == 3:
            syllable_templates = ["S(0.95):2-w(0.4):1-w(0.35):1"]  # 3/4 default
        else:
            syllable_templates = ["S(0.95):2-w(0.4):1-m(0.7):1.5-w(0.35):1"]  # 4/4 default
    
    # Join all phrase templates with the original separator for compatibility
    return "|".join(syllable_templates)

def format_syllable_templates_for_prompt(syllable_templates, arrow="→", line_wrap=10, 
                                         structured_output=False, beat_types=None):
    """
    Convert technical syllable templates into clear, human-readable instructions with
    enhanced flexibility and customization options.
    
    Parameters:
        syllable_templates: String or list of templates
        arrow: Symbol to use between beats (default: "→")
        line_wrap: Number of beats before automatic line wrapping (0 = no wrapping)
        structured_output: If True, return structured data instead of text
        beat_types: Custom mapping for beat types (default: None, uses standard mapping)
        
    Returns:
        Human-readable instructions or structured data depending on parameters
    """
    if not syllable_templates:
        return {} if structured_output else ""
    
    # Define standard beat type mapping (extensible)
    default_beat_types = {
        "S": {"name": "STRONG", "description": "stressed syllable"},
        "m": {"name": "medium", "description": "medium-stressed syllable"},
        "w": {"name": "weak", "description": "unstressed syllable"},
        "X": {"name": "EXTRA", "description": "extra strong syllable"},
        "L": {"name": "legato", "description": "connected/tied syllable"}
    }
    
    # Use custom mapping if provided, otherwise use default
    beat_types = beat_types or default_beat_types
    
    # Initialize structured output if requested
    structured_data = {"lines": [], "explanations": []} if structured_output else None
    
    # Improved format detection - more robust than just checking for "|"
    is_enhanced_format = False
    
    # Check if it's a string with enhanced format patterns
    if isinstance(syllable_templates, str):
        # Look for enhanced format patterns - check for beat type indicators
        if any(bt + "(" in syllable_templates or bt + ":" in syllable_templates or bt + "[" in syllable_templates 
               for bt in beat_types.keys()):
            is_enhanced_format = True
        # Secondary check for the "|" delimiter between phrases
        elif "|" in syllable_templates:
            is_enhanced_format = True
    
    # Initialize the output with a brief explanatory header
    output = []
    
    if is_enhanced_format:
        # Split into individual phrase templates
        phrases = syllable_templates.split("|") if "|" in syllable_templates else [syllable_templates]
        
        # Process each phrase into human-readable instructions
        for i, phrase in enumerate(phrases):
            # Check for special annotations
            has_swing = "(swing)" in phrase
            if has_swing:
                phrase = phrase.replace("(swing)", "")  # Remove annotation for processing
            
            beats = phrase.split("-")
            beat_instructions = []
            
            # Process each beat in the phrase
            for j, beat in enumerate(beats):
                # Extract beat type and information
                beat_info = {"original": beat, "type": None, "count": None, "strength": None}
                
                # Handle enhanced format with embedded strength values: S(0.95):2
                if "(" in beat and ")" in beat and ":" in beat:
                    parts = beat.split(":")
                    beat_type = parts[0].split("(")[0]  # Extract beat type
                    strength = parts[0].split("(")[1].rstrip(")")  # Extract strength value
                    count = parts[1]  # Extract syllable count
                    
                    beat_info["type"] = beat_type
                    beat_info["count"] = count
                    beat_info["strength"] = strength
                
                # Handle simpler format: S2, m1, w1
                elif any(beat.startswith(bt) for bt in beat_types.keys()) and len(beat) > 1:
                    beat_type = beat[0]
                    count = beat[1:]
                    
                    beat_info["type"] = beat_type
                    beat_info["count"] = count
                
                # Fallback for any other format
                else:
                    beat_instructions.append(beat)
                    continue
                
                # Format the beat instruction based on type
                if beat_info["type"] in beat_types:
                    type_name = beat_types[beat_info["type"]]["name"]
                    if beat_info["strength"]:
                        beat_instructions.append(f"{type_name}({beat_info['count']}) [{beat_info['strength']}]")
                    else:
                        beat_instructions.append(f"{type_name}({beat_info['count']})")
                else:
                    # Unknown beat type, use as-is
                    beat_instructions.append(beat)
            
            # Handle line wrapping for readability
            if line_wrap > 0 and len(beat_instructions) > line_wrap:
                wrapped_instructions = []
                for k in range(0, len(beat_instructions), line_wrap):
                    section = beat_instructions[k:k+line_wrap]
                    wrapped_instructions.append(f"{arrow} ".join(section))
                line_desc = f"\n    {arrow} ".join(wrapped_instructions)
            else:
                line_desc = f" {arrow} ".join(beat_instructions)
            
            # Add swing notation if present
            if has_swing:
                line_desc += " [with swing feel]"
            
            # Add to output
            line_output = f"Line {i+1}: {line_desc}"
            output.append(line_output)
            
            if structured_output:
                structured_data["lines"].append({
                    "line_number": i+1,
                    "beats": [{"original": beats[j], 
                              "type": beat_info.get("type"),
                              "count": beat_info.get("count"),
                              "strength": beat_info.get("strength")} 
                             for j, beat_info in enumerate([b for b in beats if isinstance(b, dict)])],
                    "has_swing": has_swing
                })
        
        # Add explanation of notation after the lines
        explanation = [
            "\n📝 UNDERSTANDING THE NOTATION:"
        ]
        
        # Add descriptions for each beat type that was actually used
        used_beat_types = set()
        for phrase in phrases:
            for beat in phrase.split("-"):
                for bt in beat_types.keys():
                    if beat.startswith(bt):
                        used_beat_types.add(bt)
        
        for bt in used_beat_types:
            if bt in beat_types:
                name = beat_types[bt]["name"]
                desc = beat_types[bt]["description"]
                explanation.append(f"- {name}(n): Place a {desc} here, plus (n-1) unstressed syllables")
        
        explanation.extend([
            f"- {arrow}: Indicates flow from one beat to the next",
            "- [0.xx]: Beat strength value (higher = more emphasis needed)"
        ])
        
        output.extend(explanation)
        
        if structured_output:
            structured_data["explanations"] = explanation
        
        # Add examples for half-syllable values if they appear in the templates
        has_half_syllables = any((".5" in beat) for phrase in phrases for beat in phrase.split("-"))
        if has_half_syllables:
            half_syllable_examples = [
                "\n🎵 HALF-SYLLABLE EXAMPLES:",
                "- STRONG(1.5): One stressed syllable followed by an unstressed half-syllable",
                "  Example: \"LOVE you\" where \"LOVE\" is stressed and \"you\" is quick",
                "- medium(2.5): One medium syllable plus one-and-a-half unstressed syllables",
                "  Example: \"Wait for the\" where \"Wait\" is medium-stressed and \"for the\" is quick"
            ]
            output.extend(half_syllable_examples)
            
            if structured_output:
                structured_data["half_syllable_examples"] = half_syllable_examples
        
        # Add swing explanation if needed
        if any("swing" in phrase for phrase in phrases):
            swing_guide = [
                "\n🎶 SWING RHYTHM GUIDE:",
                "- In swing, syllables should be unevenly timed (long-short pattern)",
                "- Example: \"SUM-mer TIME\" in swing feels like \"SUM...mer-TIME\" with delay"
            ]
            output.extend(swing_guide)
            
            if structured_output:
                structured_data["swing_guide"] = swing_guide
    
    # Handle the original format or segment dictionaries
    else:
        formatted_lines = []
        
        if isinstance(syllable_templates, list):
            for i, template in enumerate(syllable_templates):
                if isinstance(template, dict) and "syllable_template" in template:
                    line = f"Line {i+1}: {template['syllable_template']} syllables"
                    formatted_lines.append(line)
                    
                    if structured_output:
                        structured_data["lines"].append({
                            "line_number": i+1,
                            "syllable_count": template["syllable_template"]
                        })
                elif isinstance(template, str):
                    line = f"Line {i+1}: {template} syllables"
                    formatted_lines.append(line)
                    
                    if structured_output:
                        structured_data["lines"].append({
                            "line_number": i+1,
                            "syllable_count": template
                        })
            
            output = formatted_lines
        else:
            output = [str(syllable_templates)]
            
            if structured_output:
                structured_data["raw_content"] = str(syllable_templates)
    
    # Add general application advice
    application_tips = [
        "\n💡 APPLICATION TIPS:",
        "1. Strong beats need naturally stressed syllables (like the START of \"RE-mem-ber\")",
        "2. Place important words on strong beats for natural emphasis",
        "3. Vowel sounds work best for sustained or emphasized syllables",
        "4. Keep consonant clusters (like \"str\" or \"thr\") on weak beats"
    ]
    output.extend(application_tips)
    
    if structured_output:
        structured_data["application_tips"] = application_tips
        return structured_data
    
    return "\n".join(output)

def verify_flexible_syllable_counts(lyrics, templates):
    """
    Enhanced verification of syllable counts and stress patterns with precise alignment analysis
    and detailed feedback for all phrases in a template.
    """
    import re
    import pronouncing
    import numpy as np
    import functools
    from itertools import chain
    
    # Apply caching to improve performance for repeated word lookups
    @functools.lru_cache(maxsize=512)
    def cached_phones_for_word(word):
        return pronouncing.phones_for_word(word)
    
    @functools.lru_cache(maxsize=512)
    def count_syllables_for_word(word):
        """Count syllables in a single word with caching for performance."""
        # Try using pronouncing library first
        pronunciations = cached_phones_for_word(word.lower())
        if pronunciations:
            return pronouncing.syllable_count(pronunciations[0])
        
        # Fallback method for words not in the pronouncing dictionary
        vowels = "aeiouy"
        word = word.lower()
        count = 0
        prev_is_vowel = False
        
        for char in word:
            is_vowel = char in vowels
            if is_vowel and not prev_is_vowel:
                count += 1
            prev_is_vowel = is_vowel
        
        # Handle special cases
        if word.endswith('e') and not word.endswith('le'):
            count -= 1
        if word.endswith('le') and len(word) > 2 and word[-3] not in vowels:
            count += 1
        if count == 0:
            count = 1
        
        return count
    
    @functools.lru_cache(maxsize=512)
    def get_word_stress(word):
        """Get the stress pattern for a word with improved fallback handling."""
        pronunciations = cached_phones_for_word(word.lower())
        if pronunciations:
            return pronouncing.stresses(pronunciations[0])
        
        # Enhanced fallback for words not in the dictionary
        syllables = count_syllables_for_word(word)
        
        # Common English stress patterns by word length
        if syllables == 1:
            return "1"  # Single syllable words are stressed
        elif syllables == 2:
            # Most 2-syllable nouns and adjectives stress first syllable
            # Common endings that indicate second-syllable stress
            second_syllable_stress = ["ing", "er", "or", "ize", "ise", "ate", "ect", "end", "ure"]
            if any(word.endswith(ending) for ending in second_syllable_stress):
                return "01"
            else:
                return "10"  # Default for 2-syllable words
        elif syllables == 3:
            # Common endings for specific stress patterns in 3-syllable words
            if any(word.endswith(ending) for ending in ["ity", "ety", "ify", "ogy", "graphy"]):
                return "100"  # First syllable stress
            elif any(word.endswith(ending) for ending in ["ation", "ious", "itis"]):
                return "010"  # Middle syllable stress
            else:
                return "100"  # Default for 3-syllable words
        else:
            # For longer words, use common English patterns
            return "1" + "0" * (syllables - 1)
    
    # Split lyrics into lines
    lines = [line.strip() for line in lyrics.split("\n") if line.strip()]
    
    # Initialize tracking variables
    verification_notes = []
    detailed_analysis = []
    stress_misalignments = []
    total_mismatch_count = 0
    
    # Process each lyric line against its template
    for i, line in enumerate(lines):
        if i >= len(templates):
            break
            
        template = templates[i]
        
        # Extract the template string from different possible formats
        if isinstance(template, dict) and "syllable_template" in template:
            template_str = template["syllable_template"]
        elif isinstance(template, str):
            template_str = template
        else:
            continue
        
        # Handle multiple phrases in template - process ALL phrases, not just the first
        template_phrases = [template_str]
        if "|" in template_str:
            template_phrases = template_str.split("|")
        
        # Check against all phrases and find the best match
        best_match_diff = float('inf')
        best_match_phrase = None
        best_phrase_beats = None
        actual_count = count_syllables(line)
        
        for phrase_idx, phrase in enumerate(template_phrases):
            # Extract beat patterns and expected syllable counts from template
            beats_info = []
            total_expected = 0
            
            # Enhanced template parsing
            if "-" in phrase:
                beat_templates = phrase.split("-")
                
                # Parse each beat template
                for beat in beat_templates:
                    beat_info = {"original": beat, "type": None, "count": 1, "strength": None}
                    
                    # Handle templates with embedded strength values: S(0.95):2
                    if "(" in beat and ")" in beat and ":" in beat:
                        parts = beat.split(":")
                        beat_type = parts[0].split("(")[0]
                        try:
                            strength = float(parts[0].split("(")[1].rstrip(")"))
                        except ValueError:
                            strength = 1.0
                        
                        # Handle potential float syllable counts
                        try:
                            count = float(parts[1])
                            # Convert to int if it's a whole number
                            if count == int(count):
                                count = int(count)
                        except ValueError:
                            count = 1
                        
                        beat_info.update({
                            "type": beat_type,
                            "count": count,
                            "strength": strength
                        })
                    
                    # Handle simple format: S2, m1, w1
                    elif any(beat.startswith(x) for x in ["S", "m", "w", "X", "L"]):
                        beat_type = beat[0]
                        
                        # Extract count, supporting float values
                        try:
                            count_str = beat[1:]
                            count = float(count_str)
                            if count == int(count):
                                count = int(count)
                        except ValueError:
                            count = 1
                        
                        beat_info.update({
                            "type": beat_type,
                            "count": count
                        })
                    
                    # Legacy format - just numbers
                    else:
                        try:
                            count = float(beat)
                            if count == int(count):
                                count = int(count)
                            beat_info["count"] = count
                        except ValueError:
                            pass
                    
                    beats_info.append(beat_info)
                    total_expected += beat_info["count"]
                
                # Compare this phrase to actual syllable count
                phrase_diff = abs(actual_count - total_expected)
                
                # Adaptive threshold based on expected syllables
                expected_ratio = 0.15 if total_expected > 10 else 0.25
                phrase_threshold = max(1, round(total_expected * expected_ratio))
                
                # If this is the best match so far, store it
                if phrase_diff < best_match_diff:
                    best_match_diff = phrase_diff
                    best_match_phrase = phrase
                    best_phrase_beats = beats_info
            
            # For very simple templates without "-"
            else:
                try:
                    total_expected = float(phrase)
                    phrase_diff = abs(actual_count - total_expected)
                    if phrase_diff < best_match_diff:
                        best_match_diff = phrase_diff
                        best_match_phrase = phrase
                        best_phrase_beats = [{"count": total_expected}]
                except ValueError:
                    pass
        
        # If we found a reasonable match, proceed with analysis
        if best_match_phrase and best_phrase_beats:
            total_expected = sum(beat["count"] for beat in best_phrase_beats)
            
            # Calculate adaptive threshold based on expected syllables
            expected_ratio = 0.15 if total_expected > 10 else 0.25
            threshold = max(1, round(total_expected * expected_ratio))
            
            # Check if total syllable count is significantly off
            if total_expected > 0 and best_match_diff > threshold:
                verification_notes.append(f"Line {i+1}: Expected {total_expected} syllables, got {actual_count}")
                total_mismatch_count += 1
                
                # Extract words and perform detailed alignment analysis
                words = re.findall(r'\b[a-zA-Z]+\b', line.lower())
                
                # Get syllable count and stress for each word
                word_analysis = []
                cumulative_syllables = 0
                
                for word in words:
                    syllable_count = count_syllables_for_word(word)
                    
                    # Get stress pattern
                    stress_pattern = get_word_stress(word)
                    
                    word_analysis.append({
                        "word": word,
                        "syllables": syllable_count,
                        "stress_pattern": stress_pattern,
                        "position": cumulative_syllables
                    })
                    
                    cumulative_syllables += syllable_count
                
                # Analyze alignment with beats - only if there are beat types
                if best_phrase_beats and any(b.get("type") == "S" for b in best_phrase_beats if "type" in b):
                    # Identify positions where strong syllables should fall
                    strong_positions = []
                    current_pos = 0
                    
                    for beat in best_phrase_beats:
                        if beat.get("type") == "S":
                            strong_positions.append(current_pos)
                        current_pos += beat.get("count", 1)
                    
                    # Check if strong syllables align with strong beats
                    alignment_issues = []
                    
                    for pos in strong_positions:
                        # Find which word contains this position
                        misaligned_word = None
                        
                        for word_info in word_analysis:
                            word_start = word_info["position"]
                            word_end = word_start + word_info["syllables"]
                            
                            if word_start <= pos < word_end:
                                # Check if a stressed syllable falls on this position
                                syllable_in_word = pos - word_start
                                
                                # Get stress pattern for this word
                                stress = word_info["stress_pattern"]
                                
                                # If we have stress information and this syllable isn't stressed
                                if stress and syllable_in_word < len(stress) and stress[syllable_in_word] != '1':
                                    misaligned_word = word_info["word"]
                                    alignment_issues.append(f"'{word_info['word']}' (unstressed syllable on strong beat)")
                                    stress_misalignments.append({
                                        "line": i+1,
                                        "word": word_info["word"],
                                        "position": pos,
                                        "suggestion": get_stress_aligned_alternatives(word_info["word"], syllable_in_word)
                                    })
                                break
                    
                    if alignment_issues:
                        verification_notes.append(f"  → Stress misalignments: {', '.join(alignment_issues)}")
                    
                    # Generate a visual alignment map for better understanding
                    alignment_map = generate_alignment_visualization(line, best_phrase_beats, word_analysis)
                    if alignment_map:
                        detailed_analysis.append(f"Line {i+1} Alignment Analysis:\n{alignment_map}")
        else:
            # If no matching template was found
            verification_notes.append(f"Line {i+1}: Unable to find matching template pattern")
    
    # Only add detailed analysis if we have rhythm mismatches
    if verification_notes:
        lyrics += "\n\n[Note: Potential rhythm mismatches detected in these lines:]\n"
        lyrics += "\n".join(verification_notes)
        
        if detailed_analysis:
            lyrics += "\n\n[Detailed Alignment Analysis:]\n"
            lyrics += "\n\n".join(detailed_analysis)
        
        lyrics += "\n\n[How to fix rhythm mismatches:]\n"
        lyrics += "1. Make sure stressed syllables (like 'LO' in 'LOV-er') fall on STRONG beats\n"
        lyrics += "2. Adjust syllable counts to match the template (add/remove words or use different words)\n"
        lyrics += "3. Try using words where natural stress aligns with musical rhythm\n"
        
        # Add specific word substitution suggestions if we found stress misalignments
        if stress_misalignments:
            lyrics += "\n[Specific word replacement suggestions:]\n"
            for issue in stress_misalignments[:5]:  # Limit to first 5 issues
                if issue["suggestion"]:
                    lyrics += f"Line {issue['line']}: Consider replacing '{issue['word']}' with: {issue['suggestion']}\n"
    
    return lyrics

def generate_alignment_visualization(line, beats_info, word_analysis):
    """Generate a visual representation of syllable alignment with beats."""
    if not beats_info or not word_analysis:
        return None
    
    # Create a syllable breakdown with stress information
    syllable_breakdown = []
    syllable_stresses = []
    
    for word_info in word_analysis:
        word = word_info["word"]
        syllables = word_info["syllables"]
        stress = word_info["stress_pattern"] or ""
        
        # Extend stress pattern if needed
        while len(stress) < syllables:
            stress += "0"
        
        # Get syllable breakdown
        parts = naive_syllable_split(word, syllables)
        
        for i, part in enumerate(parts):
            syllable_breakdown.append(part)
            if i < len(stress):
                syllable_stresses.append(stress[i])
            else:
                syllable_stresses.append("0")
    
    # Create beat pattern
    beat_types = []
    current_pos = 0
    
    for beat in beats_info:
        beat_type = beat.get("type", "-")
        count = beat.get("count", 1)
        
        # Handle whole numbers and half syllables
        if isinstance(count, int):
            beat_types.extend([beat_type] * count)
        else:
            # For half syllables, round up and use markers
            whole_part = int(count)
            frac_part = count - whole_part
            
            if whole_part > 0:
                beat_types.extend([beat_type] * whole_part)
            
            if frac_part > 0:
                beat_types.append(f"{beat_type}½")
    
    # Ensure we have enough beat types
    while len(beat_types) < len(syllable_breakdown):
        beat_types.append("-")
    
    # Trim beat types if too many
    beat_types = beat_types[:len(syllable_breakdown)]
    
    # Generate the visualization with highlighted misalignments
    result = []
    
    # First line: syllable breakdown with stress indicators
    syllable_display = []
    for i, syllable in enumerate(syllable_breakdown):
        if i < len(syllable_stresses) and syllable_stresses[i] == "1":
            syllable_display.append(syllable.upper())  # Uppercase for stressed syllables
        else:
            syllable_display.append(syllable.lower())  # Lowercase for unstressed
    
    result.append(" - ".join(syllable_display))
    
    # Second line: beat indicators with highlighting for misalignments
    beat_indicators = []
    for i, (syllable, beat_type) in enumerate(zip(syllable_stresses, beat_types)):
        if beat_type == "S" or beat_type.startswith("S"):
            if syllable == "1":
                beat_indicators.append("↑")  # Aligned strong beat
            else:
                beat_indicators.append("❌")  # Misaligned strong beat
        elif beat_type == "m" or beat_type.startswith("m"):
            beat_indicators.append("•")  # Medium beat
        elif beat_type == "w" or beat_type.startswith("w"):
            beat_indicators.append("·")  # Weak beat
        else:
            beat_indicators.append(" ")
    
    result.append("   ".join(beat_indicators))
    
    # Third line: beat types
    result.append(" - ".join(beat_types))
    
    return "\n".join(result)

@functools.lru_cache(maxsize=256)
def naive_syllable_split(word, syllable_count):
    """Naively split a word into the specified number of syllables, with caching for performance."""
    if syllable_count <= 1:
        return [word]
    
    # Common syllable break patterns
    vowels = "aeiouy"
    consonants = "bcdfghjklmnpqrstvwxz"
    
    # Find potential split points
    splits = []
    for i in range(1, len(word) - 1):
        if word[i] in consonants and word[i-1] in vowels:
            splits.append(i)
        elif word[i] in vowels and word[i-1] in consonants and word[i+1] in consonants:
            splits.append(i+1)
    
    # Ensure we have enough split points
    while len(splits) < syllable_count - 1:
        for i in range(1, len(word)):
            if i not in splits:
                splits.append(i)
                break
    
    # Sort and limit
    splits.sort()
    splits = splits[:syllable_count - 1]
    
    # Split the word
    result = []
    prev = 0
    for pos in splits:
        result.append(word[prev:pos])
        prev = pos
    
    result.append(word[prev:])
    return result

def get_stress_aligned_alternatives(word, position_to_stress):
    """Suggest alternative words with proper stress at the required position."""
    # This would ideally use a more sophisticated dictionary lookup,
    # but here's a simple implementation with common word patterns
    syllable_count = count_syllables_for_word(word)
    
    # Common synonyms/replacements by syllable count with stress position
    if syllable_count == 2:
        if position_to_stress == 0:  # Need stress on first syllable
            first_stress = ["love-ly", "won-der", "beau-ty", "danc-ing", "dream-ing", 
                           "heart-beat", "sun-light", "moon-light", "star-light"]
            return ", ".join(first_stress[:3])
        else:  # Need stress on second syllable
            second_stress = ["be-LIEVE", "a-BOVE", "a-ROUND", "to-DAY", "a-LIVE",
                            "a-LONE", "be-HOLD", "re-TURN", "de-LIGHT"]
            return ", ".join(second_stress[:3])
    elif syllable_count == 3:
        if position_to_stress == 0:  # First syllable stress
            return "MEM-o-ry, WON-der-ful, BEAU-ti-ful"
        elif position_to_stress == 1:  # Second syllable stress
            return "a-MAZE-ing, to-GE-ther, for-EV-er"
        else:  # Third syllable stress
            return "un-der-STAND, o-ver-COME, ne-ver-MORE"
    
    # For other cases, just provide general guidance
    return f"a word with stress on syllable {position_to_stress + 1}"

def generate_lyrics(genre, duration, emotion_results, song_structure=None):
    """
    Generate lyrics based on the genre, emotion, and structure analysis with enhanced rhythmic alignment.
    
    This improved version uses advanced template creation, better formatting, and verification with
    potential refinement for lyrics that perfectly match the musical rhythm patterns.
    
    Parameters:
        genre: Musical genre of the audio
        duration: Duration of the audio in seconds
        emotion_results: Dictionary containing emotional analysis results
        song_structure: Optional dictionary containing song structure analysis
        
    Returns:
        Generated lyrics aligned with the rhythm patterns of the music
    """
    # Extract emotion and theme data from analysis results
    primary_emotion = emotion_results["emotion_analysis"]["primary_emotion"]
    primary_theme = emotion_results["theme_analysis"]["primary_theme"]
    
    # Extract numeric values safely with fallbacks
    try:
        tempo = float(emotion_results["rhythm_analysis"]["tempo"])
    except (KeyError, ValueError, TypeError):
        tempo = 0.0
        
    key = emotion_results["tonal_analysis"]["key"]
    mode = emotion_results["tonal_analysis"]["mode"]
    
    # Format syllable templates for the prompt
    syllable_guidance = ""
    templates_for_verification = []
    
    # Create a structure visualization to help with lyrics-music matching
    structure_visualization = "=== MUSIC-LYRICS STRUCTURE MATCHING ===\n\n"
    structure_visualization += f"Song Duration: {duration:.1f} seconds\n"
    structure_visualization += f"Tempo: {tempo:.1f} BPM\n\n"
    
    if song_structure:
        # Try to use flexible structure if available
        if "flexible_structure" in song_structure and song_structure["flexible_structure"]:
            flexible = song_structure["flexible_structure"]
            if "segments" in flexible and flexible["segments"]:
                # Get the segments
                segments = flexible["segments"]
                
                # Add structure visualization
                structure_visualization += f"Total segments: {len(segments)}\n"
                structure_visualization += "Each segment represents one musical phrase for which you should write ONE line of lyrics.\n\n"
                
                # Process each segment to create enhanced rhythmic templates
                enhanced_templates = []
                
                for i, segment in enumerate(segments):
                    if i < 30:  # Extend limit to 30 lines to handle longer songs
                        # Get the beat information for this segment
                        segment_start = segment["start"]
                        segment_end = segment["end"]
                        
                        # Add segment info to visualization
                        structure_visualization += f"Segment {i+1}: {segment_start:.1f}s - {segment_end:.1f}s (duration: {segment_end-segment_start:.1f}s)\n"
                        
                        # Find beats within this segment
                        segment_beats = []
                        beat_times = flexible["beats"]["beat_times"]
                        beat_strengths = flexible["beats"].get("beat_strengths", [])
                        
                        for j, beat_time in enumerate(beat_times):
                            if segment_start <= beat_time < segment_end:
                                # Add this beat to the segment
                                segment_beats.append(j)
                        
                        # Create segment-specific beat info
                        segment_beats_info = {
                            "beat_times": [beat_times[j] for j in segment_beats],
                            "tempo": flexible["beats"].get("tempo", 120)
                        }
                        
                        if beat_strengths:
                            segment_beats_info["beat_strengths"] = [
                                beat_strengths[j] for j in segment_beats 
                                if j < len(beat_strengths)
                            ]
                        
                        # Create a phrase structure for this segment
                        segment_beats_info["phrases"] = [segment_beats]
                        
                        # Generate enhanced template with genre awareness and auto phrasing
                        enhanced_template = create_flexible_syllable_templates(
                            segment_beats_info,
                            genre=genre,
                            phrase_mode='auto' if i == 0 else 'default'
                        )
                        enhanced_templates.append(enhanced_template)
                        templates_for_verification.append(enhanced_template)
                        
                        # Add template to visualization
                        structure_visualization += f"  Template: {enhanced_template}\n"
                
                # Use these templates to determine verse/chorus structure based on similar patterns
                # This is a simple version - could be enhanced with more sophisticated pattern detection
                section_types = []
                pattern_groups = {}
                
                for i, template in enumerate(enhanced_templates):
                    # Create simplified version for pattern matching
                    simple_pattern = template.replace("(", "").replace(")", "").replace(":", "")
                    
                    # Check if this pattern is similar to any we've seen
                    found_match = False
                    for group, patterns in pattern_groups.items():
                        if any(simple_pattern == p.replace("(", "").replace(")", "").replace(":", "") for p in patterns):
                            pattern_groups[group].append(template)
                            section_types.append(group)
                            found_match = True
                            break
                    
                    if not found_match:
                        # New pattern type
                        group_name = f"Group_{len(pattern_groups) + 1}"
                        pattern_groups[group_name] = [template]
                        section_types.append(group_name)
                
                # Map pattern groups to verse/chorus/bridge based on common structures
                section_mapping = {}
                if len(pattern_groups) >= 1:
                    # Assume the most common pattern is the verse
                    most_common = max(pattern_groups.items(), key=lambda x: len(x[1]))[0]
                    section_mapping[most_common] = "verse"
                
                if len(pattern_groups) >= 2:
                    # Second most common might be chorus
                    sorted_groups = sorted(pattern_groups.items(), key=lambda x: len(x[1]), reverse=True)
                    if len(sorted_groups) > 1:
                        section_mapping[sorted_groups[1][0]] = "chorus"
                
                if len(pattern_groups) >= 3:
                    # Third pattern could be bridge
                    sorted_groups = sorted(pattern_groups.items(), key=lambda x: len(x[1]), reverse=True)
                    if len(sorted_groups) > 2:
                        section_mapping[sorted_groups[2][0]] = "bridge"
                
                # Update section types using the mapping
                mapped_section_types = []
                for section_type in section_types:
                    if section_type in section_mapping:
                        mapped_section_types.append(section_mapping[section_type])
                    else:
                        mapped_section_types.append("verse")  # Default to verse
                
                # Add structure visualization with section types
                structure_visualization += "\nPredicted Song Structure:\n"
                for i, section_type in enumerate(mapped_section_types):
                    if i < len(enhanced_templates):
                        structure_visualization += f"Line {i+1}: [{section_type.upper()}] {enhanced_templates[i]}\n"
                
                # Calculate total line count
                total_lines = len(enhanced_templates)
                verse_lines = mapped_section_types.count("verse")
                chorus_lines = mapped_section_types.count("chorus")
                bridge_lines = mapped_section_types.count("bridge")
                
                # Add summary
                structure_visualization += f"\nTotal Lines Required: {total_lines}\n"
                structure_visualization += f"Verse Lines: {verse_lines}\n"
                structure_visualization += f"Chorus Lines: {chorus_lines}\n"
                structure_visualization += f"Bridge Lines: {bridge_lines}\n"
                
                # Format templates with improved formatting for the prompt
                syllable_guidance = "CRITICAL RHYTHM INSTRUCTIONS:\n"
                syllable_guidance += "Each line of lyrics MUST match exactly with one musical phrase/segment.\n"
                syllable_guidance += "Follow these rhythm patterns for each line (STRONG beats need stressed syllables):\n\n"
                
                # Add section headers to formatted templates
                formatted_templates = []
                for i, template in enumerate(enhanced_templates):
                    if i < len(mapped_section_types):
                        section_type = mapped_section_types[i].upper()
                        if i > 0 and mapped_section_types[i] != mapped_section_types[i-1]:
                            # New section
                            formatted_templates.append(f"\n[{section_type}]")
                        elif i == 0:
                            # First section
                            formatted_templates.append(f"[{section_type}]")
                    formatted_templates.append(format_syllable_templates_for_prompt([template], arrow="→", line_wrap=8))
                
                syllable_guidance += "\n".join(formatted_templates)
                
                # Store info for later use in traditional sections approach
                use_sections = True
                
                # Use the detected section structure for traditional approach
                if verse_lines > 0:
                    verse_lines = min(verse_lines, total_lines // 2)  # Ensure reasonable limits
                else:
                    verse_lines = total_lines // 2
                    
                if chorus_lines > 0:
                    chorus_lines = min(chorus_lines, total_lines // 3)
                else:
                    chorus_lines = total_lines // 3
                    
                if bridge_lines > 0:
                    bridge_lines = min(bridge_lines, total_lines // 6)
                else:
                    bridge_lines = 0
                
        # Fallback to traditional sections if needed
        elif "syllables" in song_structure and song_structure["syllables"]:
            syllable_guidance = "RHYTHM PATTERN INSTRUCTIONS:\n"
            syllable_guidance += "Follow these syllable patterns for each section. Each line should match ONE phrase:\n\n"
            
            # Count sections for visualization
            section_counts = {"verse": 0, "chorus": 0, "bridge": 0, "intro": 0, "outro": 0}
            
            for section in song_structure["syllables"]:
                section_counts[section["type"]] = section_counts.get(section["type"], 0) + 1
                
                if "syllable_template" in section:
                    # Process to create enhanced template
                    section_beats_info = {
                        "beat_times": [beat for beat in song_structure["beats"]["beat_times"] 
                                       if section["start"] <= beat < section["end"]],
                        "tempo": song_structure["beats"].get("tempo", 120)
                    }
                    
                    if "beat_strengths" in song_structure["beats"]:
                        section_beats_info["beat_strengths"] = [
                            strength for i, strength in enumerate(song_structure["beats"]["beat_strengths"])
                            if i < len(song_structure["beats"]["beat_times"]) and
                            section["start"] <= song_structure["beats"]["beat_times"][i] < section["end"]
                        ]
                    
                    # Create a phrase structure for this section
                    section_beats_info["phrases"] = [list(range(len(section_beats_info["beat_times"])))]
                    
                    # Generate enhanced template with genre awareness
                    enhanced_template = create_flexible_syllable_templates(
                        section_beats_info,
                        genre=genre,
                        phrase_mode='auto' if section['type'] == 'verse' else 'default'
                    )
                    
                    syllable_guidance += f"[{section['type'].capitalize()}]:\n"
                    syllable_guidance += format_syllable_templates_for_prompt(
                        enhanced_template,
                        arrow="→", 
                        line_wrap=6
                    ) + "\n\n"
                    templates_for_verification.append(section)
                elif "syllable_count" in section:
                    syllable_guidance += f"[{section['type'].capitalize()}]: ~{section['syllable_count']} syllables total\n"
            
            # Create structure visualization
            structure_visualization += "Using traditional section-based structure:\n"
            for section_type, count in section_counts.items():
                if count > 0:
                    structure_visualization += f"{section_type.capitalize()}: {count} sections\n"
            
            # Set traditional section counts
            verse_lines = max(2, section_counts.get("verse", 0) * 4)
            chorus_lines = max(2, section_counts.get("chorus", 0) * 4)
            bridge_lines = max(0, section_counts.get("bridge", 0) * 2)
            
            # Use sections approach
            use_sections = True
    
    # If we couldn't get specific templates, use general guidance
    if not syllable_guidance:
        syllable_guidance = "RHYTHM ALIGNMENT INSTRUCTIONS:\n\n"
        syllable_guidance += "1. Align stressed syllables with strong beats (usually beats 1 and 3 in 4/4 time)\n"
        syllable_guidance += "2. Use unstressed syllables on weak beats (usually beats 2 and 4 in 4/4 time)\n"
        syllable_guidance += "3. Use appropriate syllable counts based on tempo:\n"
        syllable_guidance += "   - Fast tempo (>120 BPM): 4-6 syllables per line\n"
        syllable_guidance += "   - Medium tempo (90-120 BPM): 6-8 syllables per line\n"
        syllable_guidance += "   - Slow tempo (<90 BPM): 8-10 syllables per line\n"
        
        # Create basic structure visualization
        structure_visualization += "Using estimated structure (no detailed analysis available):\n"
        
        # Calculate rough section counts based on duration
        estimated_lines = max(8, int(duration / 10))
        structure_visualization += f"Estimated total lines: {estimated_lines}\n"
        
        # Set traditional section counts based on duration
        verse_lines = estimated_lines // 2
        chorus_lines = estimated_lines // 3
        bridge_lines = estimated_lines // 6 if estimated_lines > 12 else 0
        
        # Use sections approach
        use_sections = True
    
    # Add examples of syllable-beat alignment with enhanced format
    syllable_guidance += "\nEXAMPLES OF PERFECT RHYTHM ALIGNMENT:\n"
    syllable_guidance += "Pattern: S(0.95):1 → w(0.4):1 → m(0.7):1 → w(0.3):1\n"
    syllable_guidance += "Lyric: 'HEAR the MU-sic PLAY'\n"
    syllable_guidance += "        ↑     ↑    ↑    ↑\n"
    syllable_guidance += "        S     w    m    w    <- BEAT TYPE\n\n"
    
    syllable_guidance += "Pattern: S(0.9):2 → w(0.3):1 → S(0.85):1 → w(0.4):2\n"
    syllable_guidance += "Lyric: 'DANC-ing TO the RHYTHM of LOVE'\n"
    syllable_guidance += "        ↑    ↑  ↑   ↑     ↑  ↑\n"
    syllable_guidance += "        S    S  w   S     w  w    <- BEAT TYPE\n\n"
    
    syllable_guidance += "Pattern: S(0.92):1 → m(0.65):2 → S(0.88):1 → w(0.35):1\n"
    syllable_guidance += "Lyric: 'TIME keeps FLOW-ing ON and ON'\n"
    syllable_guidance += "        ↑     ↑    ↑   ↑  ↑   ↑\n"
    syllable_guidance += "        S     m    m   S  w   w    <- BEAT TYPE\n\n"
    
    # Add genre-specific guidance based on the detected genre
    genre_guidance = ""
    if any(term in genre.lower() for term in ["rap", "hip-hop", "hip hop"]):
        genre_guidance += "\nSPECIFIC GUIDANCE FOR RAP/HIP-HOP RHYTHMS:\n"
        genre_guidance += "- Use more syllables per beat for rapid-fire sections\n"
        genre_guidance += "- Create internal rhymes within lines, not just at line endings\n"
        genre_guidance += "- Emphasize the first beat of each bar with strong consonants\n"
    elif any(term in genre.lower() for term in ["electronic", "edm", "techno", "house", "dance"]):
        genre_guidance += "\nSPECIFIC GUIDANCE FOR ELECTRONIC MUSIC RHYTHMS:\n"
        genre_guidance += "- Use repetitive phrases that build and release tension\n"
        genre_guidance += "- Match syllables precisely to the beat grid\n"
        genre_guidance += "- Use short, percussive words on strong beats\n"
    elif any(term in genre.lower() for term in ["rock", "metal", "punk", "alternative"]):
        genre_guidance += "\nSPECIFIC GUIDANCE FOR ROCK RHYTHMS:\n"
        genre_guidance += "- Use powerful, emotive words on downbeats\n"
        genre_guidance += "- Create contrast between verse and chorus energy levels\n"
        genre_guidance += "- Emphasize hooks with simple, memorable phrases\n"
    elif any(term in genre.lower() for term in ["folk", "country", "acoustic", "ballad"]):
        genre_guidance += "\nSPECIFIC GUIDANCE FOR FOLK/ACOUSTIC RHYTHMS:\n"
        genre_guidance += "- Focus on storytelling with clear narrative flow\n"
        genre_guidance += "- Use natural speech patterns that flow conversationally\n"
        genre_guidance += "- Place important words at the start of phrases\n"

    # Add genre guidance to the main guidance
    syllable_guidance += genre_guidance
    
    # Store the syllable guidance for later use
    syllable_guidance_text = syllable_guidance
    
    # Determine if we should use traditional sections or not based on structure
    if song_structure and "flexible_structure" in song_structure and song_structure["flexible_structure"]:
        # If we have more than 4 segments, it's likely not a traditional song structure
        if "segments" in song_structure["flexible_structure"]:
            segments = song_structure["flexible_structure"]["segments"]
            if len(segments) > 4:
                use_sections = False
    
    # Create enhanced prompt with better rhythm alignment instructions
    if use_sections:
        # Traditional approach with sections
        content = f"""
You are a talented songwriter who specializes in {genre} music.
Write original {genre} song lyrics for a song that is {duration:.1f} seconds long.

Music analysis has detected the following qualities in the music:
- Tempo: {tempo:.1f} BPM
- Key: {key} {mode}
- Primary emotion: {primary_emotion}
- Primary theme: {primary_theme}

{syllable_guidance}

CRITICAL PRINCIPLES FOR RHYTHMIC ALIGNMENT:
1. STRESSED syllables MUST fall on STRONG beats (marked with STRONG in the pattern)
2. Natural word stress patterns must match the beat strength (strong words on strong beats)
3. Line breaks should occur at phrase endings for natural breathing
4. Consonant clusters should be avoided on fast notes and strong beats
5. Open vowels (a, e, o) work better for sustained notes and syllables
6. Pay attention to strength values in the pattern (higher values like 0.95 need stronger emphasis)
7. For half-syllable positions (like S1.5 or m2.5), use short, quick syllables or words with weak vowels

Think step by step about how to match words to the rhythm pattern:
1. First, identify the strong beats in each line pattern
2. Choose words where stressed syllables naturally fall on strong beats
3. Count syllables carefully to ensure they match the pattern precisely
4. Test your line against the pattern by mapping each syllable

IMPORTANT: Each line of lyrics must match exactly to ONE musical phrase/segment.

The lyrics should:
- Perfectly capture the essence and style of {genre} music
- Express the {primary_emotion} emotion and {primary_theme} theme
- Follow the structure patterns provided above
- Be completely original
- Match the song duration of {duration:.1f} seconds

IMPORTANT: Your generated lyrics must be followed by a section titled "[RHYTHM_ANALYSIS_SECTION]" 
where you analyze how well the lyrics align with the musical rhythm. This section MUST appear
even if there are no rhythm issues. Include the following in your analysis:
1. Syllable counts for each line and how they match the rhythm pattern
2. Where stressed syllables align with strong beats
3. Any potential misalignments or improvements

Your lyrics:
"""
    else:
        # Flexible approach without traditional sections
        content = f"""
You are a talented songwriter who specializes in {genre} music.
Write original lyrics that match the rhythm of a {genre} music segment that is {duration:.1f} seconds long.

Music analysis has detected the following qualities:
- Tempo: {tempo:.1f} BPM
- Key: {key} {mode}
- Primary emotion: {primary_emotion}
- Primary theme: {primary_theme}

{syllable_guidance}

CRITICAL PRINCIPLES FOR RHYTHMIC ALIGNMENT:
1. STRESSED syllables MUST fall on STRONG beats (marked with STRONG in the pattern)
2. Natural word stress patterns must match the beat strength (strong words on strong beats)
3. Line breaks should occur at phrase endings for natural breathing
4. Consonant clusters should be avoided on fast notes and strong beats
5. Open vowels (a, e, o) work better for sustained notes and syllables
6. Pay attention to strength values in the pattern (higher values like 0.95 need stronger emphasis)
7. For half-syllable positions (like S1.5 or m2.5), use short, quick syllables or words with weak vowels

Think step by step about how to match words to the rhythm pattern:
1. First, identify the strong beats in each line pattern
2. Choose words where stressed syllables naturally fall on strong beats 
3. Count syllables carefully to ensure they match the pattern precisely
4. Test your line against the pattern by mapping each syllable

CRITICAL: Each line of lyrics must match exactly to ONE musical phrase/segment.

For perfect alignment examples:
- "FEEL the RHY-thm in your SOUL" – stressed syllables on strong beats
- "to-DAY we DANCE a-LONG" – natural speech stress matches musical stress
- "WAIT-ing FOR the SUN to RISE" – syllable emphasis aligns with beat emphasis

The lyrics should:
- Perfectly capture the essence and style of {genre} music
- Express the {primary_emotion} emotion and {primary_theme} theme
- Be completely original
- Maintain a consistent theme throughout
- Match the audio segment duration of {duration:.1f} seconds

Include any section labels like [Verse] or [Chorus] as indicated in the rhythm patterns above.
Each line of lyrics must follow the corresponding segment's rhythm pattern EXACTLY.

IMPORTANT: Your generated lyrics must be followed by a section titled "[RHYTHM_ANALYSIS_SECTION]" 
where you analyze how well the lyrics align with the musical rhythm. This section MUST appear
even if there are no rhythm issues. Include the following in your analysis:
1. Syllable counts for each line and how they match the rhythm pattern
2. Where stressed syllables align with strong beats
3. Any potential misalignments or improvements

Your lyrics:
"""

    # Format as a chat message for the LLM
    messages = [
        {"role": "user", "content": content}
    ]
    
    # Apply standard chat template without thinking enabled
    text = llm_tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    
    # Generate lyrics using the LLM
    model_inputs = llm_tokenizer([text], return_tensors="pt").to(llm_model.device)
    
    # Configure generation parameters based on model capability
    generation_params = {
        "do_sample": True,
        "temperature": 0.6,  # Lower for more consistent rhythm alignment
        "top_p": 0.95,
        "top_k": 50,  # Increased from 20 for more diversity
        "repetition_penalty": 1.2,
        "max_new_tokens": 2048  # Doubled from 1024 for more comprehensive lyrics
    }
    
    # Generate output
    generated_ids = llm_model.generate(
        **model_inputs,
        **generation_params
    )
    
    # Extract output tokens
    output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
    
    # Skip the thinking process completely and just get the raw output
    lyrics = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
    
    # If we find <thinking> tags, extract only the content after </thinking>
    if "<thinking>" in lyrics and "</thinking>" in lyrics:
        lyrics = lyrics.split("</thinking>")[1].strip()
    
    # Remove any other thinking indicators that might be present
    thinking_markers = ["<think>", "</think>", "[thinking]", "[/thinking]", "I'll think step by step:"]
    for marker in thinking_markers:
        if marker in lyrics:
            parts = lyrics.split(marker)
            if len(parts) > 1:
                lyrics = parts[-1].strip()  # Take the last part after any thinking marker
    
    # Verify syllable counts with enhanced verification
    if templates_for_verification:
        verified_lyrics = verify_flexible_syllable_counts(lyrics, templates_for_verification)
        
        # Check if significant issues were detected
        if "[Note: Potential rhythm mismatches" in verified_lyrics and "Detailed Alignment Analysis" in verified_lyrics:
            # Extract the original lyrics (before the notes section)
            original_lyrics = lyrics.split("[Note:")[0].strip()
            
            # Extract the analysis
            analysis = verified_lyrics.split("[Note:")[1]
            
            # If we have serious alignment issues, consider a refinement step
            if "stress misalignments" in analysis and len(templates_for_verification) > 0:
                # Add a refinement prompt with the specific analysis
                refinement_prompt = f"""
You need to fix rhythm issues in these lyrics. Here's the analysis of the problems:

{analysis}

Revise the lyrics to perfectly match the rhythm pattern while maintaining the theme.
Focus on fixing the stress misalignments by placing stressed syllables on STRONG beats.

Original lyrics:
{original_lyrics}

Improved lyrics with fixed rhythm:
"""
                # Format as a chat message for refinement
                refinement_messages = [
                    {"role": "user", "content": refinement_prompt}
                ]
                
                # Use standard template for refinement (no thinking mode needed)
                refinement_text = llm_tokenizer.apply_chat_template(
                    refinement_messages,
                    tokenize=False,
                    add_generation_prompt=True
                )
                
                try:
                    # Generate refined lyrics with more focus on rhythm alignment
                    refinement_inputs = llm_tokenizer([refinement_text], return_tensors="pt").to(llm_model.device)
                    
                    # Use stricter parameters for refinement
                    refinement_params = {
                        "do_sample": True,
                        "temperature": 0.4,  # Lower temperature for more precise refinement
                        "top_p": 0.9,
                        "repetition_penalty": 1.3,
                        "max_new_tokens": 1024
                    }
                    
                    refined_ids = llm_model.generate(
                        **refinement_inputs,
                        **refinement_params
                    )
                    
                    # Extract refined lyrics
                    refined_output_ids = refined_ids[0][len(refinement_inputs.input_ids[0]):].tolist()
                    refined_lyrics = llm_tokenizer.decode(refined_output_ids, skip_special_tokens=True).strip()
                    
                    # Verify the refined lyrics
                    refined_verified_lyrics = verify_flexible_syllable_counts(refined_lyrics, templates_for_verification)
                    
                    # Only use refined lyrics if they're better (fewer notes)
                    if "[Note: Potential rhythm mismatches" not in refined_verified_lyrics:
                        lyrics = refined_lyrics
                    elif refined_verified_lyrics.count("misalignments") < verified_lyrics.count("misalignments"):
                        lyrics = refined_verified_lyrics
                    else:
                        lyrics = verified_lyrics
                except Exception as e:
                    print(f"Error in lyrics refinement: {str(e)}")
                    lyrics = verified_lyrics
            else:
                # Minor issues, just use the verification notes
                lyrics = verified_lyrics
        else:
            # No significant issues detected
            lyrics = verified_lyrics
    
    # Check if we have the [RHYTHM_ANALYSIS_SECTION] tag
    if "[RHYTHM_ANALYSIS_SECTION]" in lyrics:
        # Split at our custom marker
        parts = lyrics.split("[RHYTHM_ANALYSIS_SECTION]")
        clean_lyrics = parts[0].strip()
        rhythm_analysis = parts[1].strip()
        
        # Add our standard marker for compatibility with existing code
        lyrics = clean_lyrics + "\n\n[Note: Rhythm Analysis]\n" + rhythm_analysis
    
    # For backwards compatibility - if we have the old format, still handle it
    elif "[Note: Potential rhythm mismatches" in lyrics:
        # Keep it as is, the existing parsing code can handle this format
        pass
    else:
        # No analysis found, add a minimal one
        lyrics = lyrics + "\n\n[Note: Rhythm Analysis]\nNo rhythm issues detected. All syllables align well with the beat pattern."
    
    # Before returning, add syllable analysis and prompt template
    if isinstance(lyrics, str):
        # Extract clean lyrics and analysis
        if "[Note: Rhythm Analysis]" in lyrics:
            clean_lyrics = lyrics.split("[Note: Rhythm Analysis]")[0].strip()
            rhythm_analysis = lyrics.split("[Note: Rhythm Analysis]")[1]
        elif "[Note: Potential rhythm mismatches" in lyrics:
            clean_lyrics = lyrics.split("[Note:")[0].strip()
            rhythm_analysis = "[Note:" + lyrics.split("[Note:")[1]
        else:
            clean_lyrics = lyrics
            rhythm_analysis = "No rhythm analysis available"
        
        # Create syllable analysis
        syllable_analysis = "=== SYLLABLE ANALYSIS ===\n\n"
        if templates_for_verification:
            syllable_analysis += "Template Analysis:\n"
            for i, template in enumerate(templates_for_verification):
                if i < min(len(templates_for_verification), 30):  # Limit to 30 to avoid overwhelming output
                    syllable_analysis += f"Line {i+1}:\n"
                    if isinstance(template, dict):
                        if "syllable_template" in template:
                            syllable_analysis += f"  Template: {template['syllable_template']}\n"
                        if "syllable_count" in template:
                            syllable_analysis += f"  Expected syllables: {template['syllable_count']}\n"
                    elif isinstance(template, str):
                        syllable_analysis += f"  Template: {template}\n"
                    syllable_analysis += "\n"
            
            if len(templates_for_verification) > 30:
                syllable_analysis += f"... and {len(templates_for_verification) - 30} more lines\n\n"
                
        # Add structure visualization to syllable analysis
        syllable_analysis += "\n" + structure_visualization
        
        # Create prompt template
        prompt_template = "=== PROMPT TEMPLATE ===\n\n"
        prompt_template += "Genre: " + genre + "\n"
        prompt_template += f"Duration: {duration:.1f} seconds\n"
        prompt_template += f"Tempo: {tempo:.1f} BPM\n"
        prompt_template += f"Key: {key} {mode}\n"
        prompt_template += f"Primary Emotion: {primary_emotion}\n"
        prompt_template += f"Primary Theme: {primary_theme}\n\n"
        prompt_template += "Syllable Guidance:\n" + syllable_guidance_text
        
        # Return all components
        return {
            "lyrics": clean_lyrics,
            "rhythm_analysis": rhythm_analysis,
            "syllable_analysis": syllable_analysis,
            "prompt_template": prompt_template
        }
    
    return lyrics

def process_audio(audio_file):
    """Main function to process audio file, classify genre, and generate lyrics with enhanced rhythm analysis."""
    if audio_file is None:
        return "Please upload an audio file.", None, None
    
    try:
        print("Step 1/5: Extracting audio features...")
        # Extract audio features
        audio_data = extract_audio_features(audio_file)
        
        print("Step 2/5: Verifying audio contains music...")
        # First check if it's music
        try:
            is_music, ast_results = detect_music(audio_data)
        except Exception as e:
            print(f"Error in music detection: {str(e)}")
            return f"Error in music detection: {str(e)}", None, ast_results
            
        if not is_music:
            return "The uploaded audio does not appear to be music. Please upload a music file.", None, ast_results
        
        print("Step 3/5: Classifying music genre...")
        # Classify genre
        try:
            top_genres = classify_genre(audio_data)
            # Format genre results using utility function
            genre_results = format_genre_results(top_genres)
        except Exception as e:
            print(f"Error in genre classification: {str(e)}")
            return f"Error in genre classification: {str(e)}", None, ast_results
        
        print("Step 4/5: Analyzing music emotions, themes, and structure...")
        # Analyze music emotions and themes
        try:
            emotion_results = music_analyzer.analyze_music(audio_file)
        except Exception as e:
            print(f"Error in emotion analysis: {str(e)}")
            # Continue even if emotion analysis fails
            emotion_results = {
                "emotion_analysis": {"primary_emotion": "Unknown"},
                "theme_analysis": {"primary_theme": "Unknown"},
                "rhythm_analysis": {"tempo": 0},
                "tonal_analysis": {"key": "Unknown", "mode": ""},
                "summary": {"tempo": 0, "key": "Unknown", "mode": "", "primary_emotion": "Unknown", "primary_theme": "Unknown"}
            }
        
        # Calculate detailed song structure for better lyrics alignment
        try:
            # Enhanced song structure calculation for precise lyrics matching
            y, sr = load_audio(audio_file, SAMPLE_RATE)
            
            # Analyze beats and phrases for music-aligned lyrics
            beats_info = detect_beats(y, sr)
            sections_info = detect_sections(y, sr)
            
            # Create structured segments for precise line-by-line matching
            segments = []
            
            # Try to break audio into meaningful segments based on sections
            # Each segment will correspond to one line of lyrics
            if sections_info and len(sections_info) > 1:
                min_segment_duration = 1.5  # Minimum 1.5 seconds per segment
                
                for section in sections_info:
                    section_start = section["start"]
                    section_end = section["end"]
                    section_duration = section["duration"]
                    
                    # For very short sections, add as a single segment
                    if section_duration < min_segment_duration * 1.5:
                        segments.append({
                            "start": section_start,
                            "end": section_end
                        })
                    else:
                        # Calculate ideal number of segments for this section
                        # based on its duration - aiming for 2-4 second segments
                        ideal_segment_duration = 3.0  # Target 3 seconds per segment
                        segment_count = max(1, int(section_duration / ideal_segment_duration))
                        
                        # Create evenly-spaced segments within this section
                        segment_duration = section_duration / segment_count
                        for i in range(segment_count):
                            segment_start = section_start + i * segment_duration
                            segment_end = segment_start + segment_duration
                            segments.append({
                                "start": segment_start,
                                "end": segment_end
                            })
            # If no good sections found, create segments based on beats
            elif beats_info and len(beats_info["beat_times"]) > 4:
                beats = beats_info["beat_times"]
                time_signature = beats_info.get("time_signature", 4)
                
                # Target one segment per musical measure (typically 4 beats)
                measure_size = time_signature
                for i in range(0, len(beats), measure_size):
                    if i + 1 < len(beats):  # Need at least 2 beats for a meaningful segment
                        measure_start = beats[i]
                        # If we have enough beats for the full measure
                        if i + measure_size < len(beats):
                            measure_end = beats[i + measure_size]
                        else:
                            # Use available beats and extrapolate for the last measure
                            if i > 0:
                                beat_interval = beats[i] - beats[i-1]
                                measure_end = beats[-1] + (beat_interval * (measure_size - (len(beats) - i)))
                            else:
                                measure_end = audio_data["duration"]
                        
                        segments.append({
                            "start": measure_start,
                            "end": measure_end
                        })
            # Last resort: simple time-based segments
            else:
                # Create segments of approximately 3 seconds each
                segment_duration = 3.0
                total_segments = max(4, int(audio_data["duration"] / segment_duration))
                segment_duration = audio_data["duration"] / total_segments
                
                for i in range(total_segments):
                    segment_start = i * segment_duration
                    segment_end = segment_start + segment_duration
                    segments.append({
                        "start": segment_start,
                        "end": segment_end
                    })
            
            # Create a flexible structure with the segments
            flexible_structure = {
                "beats": beats_info,
                "segments": segments
            }
            
            # Add to song structure
            song_structure = {
                "beats": beats_info,
                "sections": sections_info,
                "flexible_structure": flexible_structure
            }
            
            # Add syllable counts to each section
            song_structure["syllables"] = []
            for section in sections_info:
                # Create syllable templates for sections
                section_beats_info = {
                    "beat_times": [beat for beat in beats_info["beat_times"] 
                                  if section["start"] <= beat < section["end"]],
                    "tempo": beats_info.get("tempo", 120)
                }
                if "beat_strengths" in beats_info:
                    section_beats_info["beat_strengths"] = [
                        strength for i, strength in enumerate(beats_info["beat_strengths"])
                        if i < len(beats_info["beat_times"]) and
                        section["start"] <= beats_info["beat_times"][i] < section["end"]
                    ]
                
                # Get a syllable count based on section duration and tempo
                syllable_count = int(section["duration"] * (beats_info.get("tempo", 120) / 60) * 1.5)
                
                section_info = {
                    "type": section["type"],
                    "start": section["start"],
                    "end": section["end"],
                    "duration": section["duration"],
                    "syllable_count": syllable_count,
                    "beat_count": len(section_beats_info["beat_times"])
                }
                
                # Try to create a more detailed syllable template
                if len(section_beats_info["beat_times"]) >= 2:
                    section_info["syllable_template"] = create_flexible_syllable_templates(
                        section_beats_info,
                        genre=top_genres[0][0]
                    )
                
                song_structure["syllables"].append(section_info)
            
            print(f"Successfully analyzed song structure with {len(segments)} segments")
            
        except Exception as e:
            print(f"Error analyzing song structure: {str(e)}")
            # Continue with a simpler approach if this fails
            song_structure = None
        
        print("Step 5/5: Generating rhythmically aligned lyrics...")
        # Generate lyrics based on top genre, emotion analysis, and song structure
        try:
            primary_genre, _ = top_genres[0]
            lyrics_result = generate_lyrics(primary_genre, audio_data["duration"], emotion_results, song_structure)
            
            # Handle both old and new return formats
            if isinstance(lyrics_result, dict):
                lyrics = lyrics_result["lyrics"]
                rhythm_analysis = lyrics_result["rhythm_analysis"]
                syllable_analysis = lyrics_result["syllable_analysis"]
                prompt_template = lyrics_result["prompt_template"]
            else:
                lyrics = lyrics_result
                rhythm_analysis = "No detailed rhythm analysis available"
                syllable_analysis = "No syllable analysis available"
                prompt_template = "No prompt template available"
                
        except Exception as e:
            print(f"Error generating lyrics: {str(e)}")
            lyrics = f"Error generating lyrics: {str(e)}"
            rhythm_analysis = "No rhythm analysis available"
            syllable_analysis = "No syllable analysis available"
            prompt_template = "No prompt template available"
        
        # Prepare results dictionary with additional rhythm analysis
        results = {
            "genre_results": genre_results,
            "lyrics": lyrics,
            "rhythm_analysis": rhythm_analysis,
            "syllable_analysis": syllable_analysis,
            "prompt_template": prompt_template,
            "ast_results": ast_results
        }
        
        return results
    
    except Exception as e:
        error_msg = f"Error processing audio: {str(e)}"
        print(error_msg)
        return error_msg, None, []

# Create enhanced Gradio interface with tabs for better organization
with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo:
    gr.Markdown("# Music Genre Classifier & Lyrics Generator")
    gr.Markdown("Upload a music file to classify its genre, analyze its emotions, and generate perfectly aligned lyrics.")
    
    with gr.Row():
        with gr.Column(scale=1):
            audio_input = gr.Audio(label="Upload Music", type="filepath")
            submit_btn = gr.Button("Analyze & Generate", variant="primary")
            
            # Add genre info box 
            with gr.Accordion("About Music Genres", open=False):
                gr.Markdown("""
                The system recognizes various music genres including:
                - Pop, Rock, Hip-Hop, R&B
                - Electronic, Dance, Techno, House
                - Jazz, Blues, Classical
                - Folk, Country, Acoustic
                - Metal, Punk, Alternative
                - And many others!
                
                For best results, use high-quality audio files (MP3, WAV, FLAC) with at least 10 seconds of music.
                """)
        
        with gr.Column(scale=2):
            # Use tabs for better organization of outputs
            with gr.Tabs():
                with gr.TabItem("Analysis Results"):
                    genre_output = gr.Textbox(label="Detected Genres", lines=4)
                    
                    # Create 2 columns for emotion and audio classification
                    with gr.Row():
                        with gr.Column():
                            emotion_output = gr.Textbox(label="Emotion & Structure Analysis", lines=8)
                        with gr.Column():
                            ast_output = gr.Textbox(label="Audio Classification", lines=8)
                
                with gr.TabItem("Generated Lyrics"):
                    lyrics_output = gr.Textbox(label="Lyrics", lines=18)
                
                with gr.TabItem("Rhythm Analysis"):
                    rhythm_analysis_output = gr.Textbox(label="Syllable-Beat Alignment Analysis", lines=16)
                
                with gr.TabItem("Syllable Analysis"):
                    syllable_analysis_output = gr.Textbox(label="Detailed Syllable Analysis", lines=16)
                    prompt_template_output = gr.Textbox(label="Prompt Template", lines=16)
    
    # Processing function with better handling of results
    def display_results(audio_file):
        if audio_file is None:
            return "Please upload an audio file.", "No emotion analysis available.", "No audio classification available.", "No lyrics generated.", "No rhythm analysis available.", "No syllable analysis available.", "No prompt template available."
        
        try:
            # Process audio and get results
            results = process_audio(audio_file)
            
            # Check if we got an error message instead of results
            if isinstance(results, str) and "Error" in results:
                return results, "Error in analysis", "Error in classification", "No lyrics generated", "No rhythm analysis available", "No syllable analysis available", "No prompt template available"
            elif isinstance(results, tuple) and isinstance(results[0], str) and "Error" in results[0]:
                return results[0], "Error in analysis", "Error in classification", "No lyrics generated", "No rhythm analysis available", "No syllable analysis available", "No prompt template available"
            
            # For backwards compatibility, handle both dictionary and tuple returns
            if isinstance(results, dict):
                genre_results = results.get("genre_results", "Genre classification failed")
                lyrics = results.get("lyrics", "Lyrics generation failed")
                ast_results = results.get("ast_results", [])
                
                # Use clean lyrics if available
                clean_lyrics = results.get("clean_lyrics", lyrics)
                rhythm_analysis = results.get("rhythm_analysis", "No detailed rhythm analysis available")
                
                # Extract syllable analysis and prompt template
                syllable_analysis = results.get("syllable_analysis", "No syllable analysis available")
                prompt_template = results.get("prompt_template", "No prompt template available")
            else:
                # Handle the old tuple return format
                genre_results, lyrics, ast_results = results
                clean_lyrics = lyrics
                
                # Extract rhythm analysis if present
                rhythm_analysis = "No detailed rhythm analysis available"
                if isinstance(lyrics, str):
                    # First check for new format
                    if "[Note: Rhythm Analysis]" in lyrics:
                        clean_lyrics = lyrics.split("[Note: Rhythm Analysis]")[0].strip()
                        rhythm_analysis = lyrics.split("[Note: Rhythm Analysis]")[1]
                    # Check for old format
                    elif "[Note: Potential rhythm mismatches" in lyrics:
                        clean_lyrics = lyrics.split("[Note:")[0].strip()
                        rhythm_analysis = "[Note:" + lyrics.split("[Note:")[1]
                
                # Default values for new fields
                syllable_analysis = "No syllable analysis available"
                prompt_template = "No prompt template available"
            
            # Format emotion analysis results
            try:
                emotion_results = music_analyzer.analyze_music(audio_file)
                emotion_text = f"Tempo: {emotion_results['summary']['tempo']:.1f} BPM\n"
                emotion_text += f"Key: {emotion_results['summary']['key']} {emotion_results['summary']['mode']}\n"
                emotion_text += f"Primary Emotion: {emotion_results['summary']['primary_emotion']}\n"
                emotion_text += f"Primary Theme: {emotion_results['summary']['primary_theme']}"
                
                # Add detailed song structure information if available
                try:
                    audio_data = extract_audio_features(audio_file)
                    song_structure = calculate_detailed_song_structure(audio_data)
                    
                    emotion_text += "\n\nSong Structure:\n"
                    for section in song_structure["syllables"]:
                        emotion_text += f"- {section['type'].capitalize()}: {section['start']:.1f}s to {section['end']:.1f}s "
                        emotion_text += f"({section['duration']:.1f}s, {section['beat_count']} beats, "
                        
                        if "syllable_template" in section:
                            emotion_text += f"template: {section['syllable_template']})\n"
                        else:
                            emotion_text += f"~{section['syllable_count']} syllables)\n"
                            
                        # Add flexible structure info if available
                        if "flexible_structure" in song_structure and song_structure["flexible_structure"]:
                            flexible = song_structure["flexible_structure"]
                            if "segments" in flexible and flexible["segments"]:
                                emotion_text += "\nDetailed Rhythm Analysis:\n"
                                for i, segment in enumerate(flexible["segments"][:5]):  # Show first 5 segments
                                    emotion_text += f"- Segment {i+1}: {segment['start']:.1f}s to {segment['end']:.1f}s, "
                                    emotion_text += f"pattern: {segment.get('syllable_template', 'N/A')}\n"
                                
                                if len(flexible["segments"]) > 5:
                                    emotion_text += f"  (+ {len(flexible['segments']) - 5} more segments)\n"
                        
                except Exception as e:
                    print(f"Error displaying song structure: {str(e)}")
                    # Continue without showing structure details
                    
            except Exception as e:
                print(f"Error in emotion analysis: {str(e)}")
                emotion_text = f"Error in emotion analysis: {str(e)}"
            
            # Format AST classification results
            if ast_results and isinstance(ast_results, list):
                ast_text = "Audio Classification Results:\n"
                for result in ast_results[:5]:  # Show top 5 results
                    ast_text += f"{result['label']}: {result['score']*100:.2f}%\n"
            else:
                ast_text = "No valid audio classification results available."
            
            # Return all results including new fields
            return genre_results, emotion_text, ast_text, clean_lyrics, rhythm_analysis, syllable_analysis, prompt_template
            
        except Exception as e:
            error_msg = f"Error: {str(e)}"
            print(error_msg)
            return error_msg, "Error in emotion analysis", "Error in audio classification", "No lyrics generated", "No rhythm analysis available", "No syllable analysis available", "No prompt template available"
    
    # Connect the button to the display function with updated outputs
    submit_btn.click(
        fn=display_results,
        inputs=[audio_input],
        outputs=[genre_output, emotion_output, ast_output, lyrics_output, rhythm_analysis_output, syllable_analysis_output, prompt_template_output]
    )
    
    # Enhanced explanation of how the system works
    with gr.Accordion("How it works", open=False):
        gr.Markdown("""
        ## Advanced Lyrics Generation Process
        
        1. **Audio Analysis**: The system analyzes your uploaded music file using multiple machine learning models.
        
        2. **Genre Classification**: A specialized neural network identifies the musical genre, detecting subtle patterns in the audio.
        
        3. **Emotional Analysis**: The system examines harmonic, rhythmic, and timbral features to determine the emotional qualities of the music.
        
        4. **Rhythm Mapping**: Advanced beat detection algorithms create a detailed rhythmic map of the music, identifying:
           - Strong and weak beats
           - Natural phrase boundaries
           - Time signature and tempo variations
        
        5. **Syllable Template Creation**: For each musical phrase, the system generates precise syllable templates that reflect:
           - Beat stress patterns (strong, medium, weak)
           - Appropriate syllable counts based on tempo
           - Genre-specific rhythmic qualities
        
        6. **Lyrics Generation**: Using the detected genre, emotion, and rhythm patterns, a large language model generates lyrics that:
           - Match the emotional quality of the music
           - Follow the precise syllable templates
           - Align stressed syllables with strong beats
           - Maintain genre-appropriate style and themes
        
        7. **Rhythm Verification**: The system verifies the generated lyrics, analyzing:
           - Syllable count accuracy
           - Stress alignment with strong beats
           - Word stress patterns
           
        8. **Refinement**: If significant rhythm mismatches are detected, the system can automatically refine the lyrics for better alignment.
        
        This multi-step process creates lyrics that feel naturally connected to the music, as if they were written specifically for it.
        """)

# Launch the app
demo.launch()