File size: 126,621 Bytes
9e21eef 4ddd8f4 8ab14fe 9e21eef 38b696f 9e21eef 31a885a 9e21eef 4ddd8f4 9e21eef 00af04f 9e21eef 38b696f 31a885a 9e21eef 31a885a 38b696f 31a885a 4ddd8f4 31a885a 4ddd8f4 31a885a 4ddd8f4 31a885a 4ddd8f4 31a885a 4ddd8f4 31a885a 4ddd8f4 31a885a 4ddd8f4 31a885a 38b696f 4ddd8f4 38b696f 31a885a 38b696f 31a885a 38b696f 31a885a 38b696f 31a885a 38b696f 31a885a 38b696f 31a885a 38b696f 31a885a 38b696f 31a885a 38b696f 31a885a 38b696f 31a885a 38b696f 31a885a 38b696f 31a885a 38b696f 31a885a 38b696f 31a885a 38b696f 31a885a 38b696f 31a885a 4ddd8f4 054fb90 31a885a 4ddd8f4 31a885a 4ddd8f4 31a885a 4ddd8f4 31a885a 4ddd8f4 31a885a 054fb90 4ddd8f4 054fb90 4ddd8f4 31a885a 054fb90 31a885a 4ddd8f4 31a885a 38b696f 31a885a 054fb90 31a885a 054fb90 31a885a 4ddd8f4 31a885a 054fb90 31a885a 054fb90 31a885a 054fb90 31a885a 054fb90 31a885a 4ddd8f4 31a885a 054fb90 31a885a 054fb90 4ddd8f4 31a885a 054fb90 31a885a 054fb90 31a885a 054fb90 4ddd8f4 31a885a 4ddd8f4 31a885a 054fb90 38b696f 054fb90 31a885a 054fb90 31a885a 054fb90 31a885a 38b696f 4ddd8f4 31a885a 4ddd8f4 db4c558 31a885a 4ddd8f4 31a885a 4ddd8f4 31a885a 4ddd8f4 31a885a 4ddd8f4 054fb90 4ddd8f4 054fb90 4ddd8f4 31a885a 054fb90 31a885a 4ddd8f4 31a885a 054fb90 31a885a 054fb90 31a885a 054fb90 31a885a 054fb90 31a885a 054fb90 31a885a 4ddd8f4 31a885a 4ddd8f4 31a885a 4ddd8f4 31a885a 4ddd8f4 31a885a 4ddd8f4 31a885a db4c558 38b696f db4c558 4ddd8f4 173048d 4ddd8f4 054fb90 4ddd8f4 173048d 054fb90 173048d 054fb90 173048d 054fb90 31a885a 054fb90 173048d 054fb90 173048d 054fb90 173048d 054fb90 4ddd8f4 054fb90 173048d 4ddd8f4 173048d 4ddd8f4 054fb90 31a885a 054fb90 31a885a 054fb90 4ddd8f4 173048d 4ddd8f4 054fb90 173048d 054fb90 31a885a 054fb90 31a885a 054fb90 31a885a 054fb90 31a885a 054fb90 4ddd8f4 31a885a 173048d 4ddd8f4 054fb90 31a885a 9e21eef 4ddd8f4 054fb90 31a885a 4ddd8f4 173048d 9e21eef 173048d 9e21eef 4ddd8f4 c6a60af d6fb232 c6a60af 4ddd8f4 31a885a 4ddd8f4 054fb90 31a885a 054fb90 173048d 054fb90 4ddd8f4 173048d 9e21eef c6a60af d6fb232 c6a60af 9e21eef 31a885a d6fb232 31a885a 9e21eef 31a885a d6fb232 31a885a d6fb232 31a885a 9e21eef 31a885a 9e21eef d6fb232 31a885a 4ddd8f4 31a885a 4ddd8f4 c6a60af 31a885a c6a60af 31a885a e922466 173048d e922466 38b696f 9e21eef 31a885a 9e21eef 4af3315 9e21eef 31a885a 9e21eef 31a885a 9e21eef 00af04f 054fb90 00af04f 9e21eef 00af04f 9e21eef 31a885a 9e21eef 00af04f 9e21eef 31a885a 9e21eef 00af04f 38b696f db4c558 38b696f 9e21eef 38b696f 173048d 38b696f 31a885a 4ddd8f4 00af04f e922466 00af04f e922466 9e21eef 31a885a e922466 31a885a 9e21eef 00af04f 9e21eef 31a885a 9e21eef 31a885a 9e21eef 31a885a 9e21eef 31a885a 9e21eef 31a885a e922466 9e21eef 31a885a 9e21eef e922466 9e21eef 31a885a 9e21eef 00af04f 31a885a e922466 31a885a e922466 31a885a e922466 31a885a c6a60af e922466 00af04f 9e21eef 00af04f 38b696f 4ddd8f4 c6a60af 4ddd8f4 38b696f 00af04f 9e21eef 4af3315 00af04f 31a885a 00af04f 4af3315 e922466 31a885a 9e21eef 00af04f e922466 9e21eef e922466 9e21eef e922466 9e21eef 31a885a 9e21eef 38b696f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 |
import os
import io
import gradio as gr
import torch
import numpy as np
import re
import pronouncing # Add this to requirements.txt for syllable counting
import functools # Add this for lru_cache functionality
from transformers import (
AutoModelForAudioClassification,
AutoFeatureExtractor,
AutoTokenizer,
pipeline,
AutoModelForCausalLM,
BitsAndBytesConfig
)
from huggingface_hub import login
from utils import (
load_audio,
extract_audio_duration,
extract_mfcc_features,
calculate_lyrics_length,
format_genre_results,
ensure_cuda_availability,
preprocess_audio_for_model
)
from emotionanalysis import MusicAnalyzer
import librosa
# Login to Hugging Face Hub if token is provided
if "HF_TOKEN" in os.environ:
login(token=os.environ["HF_TOKEN"])
# Constants
GENRE_MODEL_NAME = "dima806/music_genres_classification"
MUSIC_DETECTION_MODEL = "MIT/ast-finetuned-audioset-10-10-0.4593"
LLM_MODEL_NAME = "Qwen/Qwen3-14B"
SAMPLE_RATE = 22050 # Standard sample rate for audio processing
# Check CUDA availability (for informational purposes)
CUDA_AVAILABLE = ensure_cuda_availability()
# Create music detection pipeline
print(f"Loading music detection model: {MUSIC_DETECTION_MODEL}")
try:
music_detector = pipeline(
"audio-classification",
model=MUSIC_DETECTION_MODEL,
device=0 if CUDA_AVAILABLE else -1
)
print("Successfully loaded music detection pipeline")
except Exception as e:
print(f"Error creating music detection pipeline: {str(e)}")
# Fallback to manual loading
try:
music_processor = AutoFeatureExtractor.from_pretrained(MUSIC_DETECTION_MODEL)
music_model = AutoModelForAudioClassification.from_pretrained(MUSIC_DETECTION_MODEL)
print("Successfully loaded music detection model and feature extractor")
except Exception as e2:
print(f"Error loading music detection model components: {str(e2)}")
raise RuntimeError(f"Could not load music detection model: {str(e2)}")
# Create genre classification pipeline
print(f"Loading audio classification model: {GENRE_MODEL_NAME}")
try:
genre_classifier = pipeline(
"audio-classification",
model=GENRE_MODEL_NAME,
device=0 if CUDA_AVAILABLE else -1
)
print("Successfully loaded audio classification pipeline")
except Exception as e:
print(f"Error creating pipeline: {str(e)}")
# Fallback to manual loading
try:
genre_processor = AutoFeatureExtractor.from_pretrained(GENRE_MODEL_NAME)
genre_model = AutoModelForAudioClassification.from_pretrained(GENRE_MODEL_NAME)
print("Successfully loaded audio classification model and feature extractor")
except Exception as e2:
print(f"Error loading model components: {str(e2)}")
raise RuntimeError(f"Could not load genre classification model: {str(e2)}")
# Load LLM with appropriate quantization for T4 GPU
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
llm_tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_NAME)
llm_model = AutoModelForCausalLM.from_pretrained(
LLM_MODEL_NAME,
device_map="auto",
quantization_config=bnb_config,
torch_dtype=torch.float16,
)
# Create LLM pipeline
llm_pipeline = pipeline(
"text-generation",
model=llm_model,
tokenizer=llm_tokenizer,
max_new_tokens=512,
)
# Initialize music emotion analyzer
music_analyzer = MusicAnalyzer()
# New function: Count syllables in text
def count_syllables(text):
"""Count syllables in a given text using the pronouncing library."""
words = re.findall(r'\b[a-zA-Z]+\b', text.lower())
syllable_count = 0
for word in words:
# Get pronunciations for the word
pronunciations = pronouncing.phones_for_word(word)
if pronunciations:
# Count syllables in the first pronunciation
syllable_count += pronouncing.syllable_count(pronunciations[0])
else:
# Fallback: estimate syllables based on vowel groups
vowels = "aeiouy"
count = 0
prev_is_vowel = False
for char in word:
is_vowel = char.lower() in vowels
if is_vowel and not prev_is_vowel:
count += 1
prev_is_vowel = is_vowel
if word.endswith('e'):
count -= 1
if word.endswith('le') and len(word) > 2 and word[-3] not in vowels:
count += 1
if count == 0:
count = 1
syllable_count += count
return syllable_count
def extract_audio_features(audio_file):
"""Extract audio features from an audio file."""
try:
# Load the audio file using utility function
y, sr = load_audio(audio_file, SAMPLE_RATE)
if y is None or sr is None:
raise ValueError("Failed to load audio data")
# Get audio duration in seconds
duration = extract_audio_duration(y, sr)
# Extract MFCCs for genre classification (may not be needed with the pipeline)
mfccs_mean = extract_mfcc_features(y, sr, n_mfcc=20)
return {
"features": mfccs_mean,
"duration": duration,
"waveform": y,
"sample_rate": sr,
"path": audio_file # Keep path for the pipeline
}
except Exception as e:
print(f"Error extracting audio features: {str(e)}")
raise ValueError(f"Failed to extract audio features: {str(e)}")
def classify_genre(audio_data):
"""Classify the genre of the audio using the loaded model."""
try:
# First attempt: Try using the pipeline if available
if 'genre_classifier' in globals():
results = genre_classifier(audio_data["path"])
# Transform pipeline results to our expected format
top_genres = [(result["label"], result["score"]) for result in results[:3]]
return top_genres
# Second attempt: Use manually loaded model components
elif 'genre_processor' in globals() and 'genre_model' in globals():
# Process audio input with feature extractor
inputs = genre_processor(
audio_data["waveform"],
sampling_rate=audio_data["sample_rate"],
return_tensors="pt"
)
with torch.no_grad():
outputs = genre_model(**inputs)
predictions = outputs.logits.softmax(dim=-1)
# Get the top 3 genres
values, indices = torch.topk(predictions, 3)
# Map indices to genre labels
genre_labels = genre_model.config.id2label
top_genres = []
for i, (value, index) in enumerate(zip(values[0], indices[0])):
genre = genre_labels[index.item()]
confidence = value.item()
top_genres.append((genre, confidence))
return top_genres
else:
raise ValueError("No genre classification model available")
except Exception as e:
print(f"Error in genre classification: {str(e)}")
# Fallback: return a default genre if everything fails
return [("rock", 1.0)]
def detect_music(audio_data):
"""Detect if the audio is music using the MIT AST model."""
try:
# First attempt: Try using the pipeline if available
if 'music_detector' in globals():
results = music_detector(audio_data["path"])
# Look for music-related classes in the results
music_confidence = 0.0
for result in results:
label = result["label"].lower()
if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]):
music_confidence = max(music_confidence, result["score"])
return music_confidence >= 0.2, results
# Second attempt: Use manually loaded model components
elif 'music_processor' in globals() and 'music_model' in globals():
# Process audio input with feature extractor
inputs = music_processor(
audio_data["waveform"],
sampling_rate=audio_data["sample_rate"],
return_tensors="pt"
)
with torch.no_grad():
outputs = music_model(**inputs)
predictions = outputs.logits.softmax(dim=-1)
# Get the top predictions
values, indices = torch.topk(predictions, 5)
# Map indices to labels
labels = music_model.config.id2label
# Check for music-related classes
music_confidence = 0.0
results = []
for i, (value, index) in enumerate(zip(values[0], indices[0])):
label = labels[index.item()].lower()
score = value.item()
results.append({"label": label, "score": score})
if any(music_term in label for music_term in ["music", "song", "singing", "instrument"]):
music_confidence = max(music_confidence, score)
return music_confidence >= 0.2, results
else:
raise ValueError("No music detection model available")
except Exception as e:
print(f"Error in music detection: {str(e)}")
return False, []
def detect_beats(y, sr):
"""Enhanced beat detection with adaptive threshold analysis and improved time signature detection."""
# STEP 1: Improved pre-processing with robustness for quiet sections
# Apply a small floor to avoid division-by-zero issues
y = np.clip(y, 1e-10, None) # Prevent extreme quiet sections from causing NaN
# Separate harmonic and percussive components
y_harmonic, y_percussive = librosa.effects.hpss(y)
# Generate multiple onset envelopes with smoothing for stability
onset_env_full = librosa.onset.onset_strength(y=y, sr=sr)
onset_env_perc = librosa.onset.onset_strength(y=y_percussive, sr=sr)
# Apply small smoothing to handle quiet sections
onset_env_full = np.maximum(onset_env_full, 1e-6) # Minimum threshold to avoid NaN
onset_env_perc = np.maximum(onset_env_perc, 1e-6)
# Create weighted combination
combined_onset = onset_env_full * 0.3 + onset_env_perc * 0.7
# STEP 2: Multi-strategy tempo and beat detection
tempo_candidates = []
beat_candidates = []
# Strategy 1: Standard detection
tempo1, beats1 = librosa.beat.beat_track(
onset_envelope=combined_onset,
sr=sr,
tightness=100 # More sensitive tracking
)
tempo_candidates.append(tempo1)
beat_candidates.append(beats1)
# Strategy 2: Try with different tempo range for complex signatures
tempo2, beats2 = librosa.beat.beat_track(
onset_envelope=combined_onset,
sr=sr,
tightness=100,
start_bpm=60, # Lower starting BPM helps find different time signatures
std_bpm=20 # Allow wider variations
)
tempo_candidates.append(tempo2)
beat_candidates.append(beats2)
# Select the best strategy based on consistency
beat_consistency = []
for beats in beat_candidates:
if len(beats) <= 1:
beat_consistency.append(0)
continue
times = librosa.frames_to_time(beats, sr=sr)
intervals = np.diff(times)
# More consistent beats have lower variance in intervals
if np.mean(intervals) > 0:
consistency = 1.0 / (1.0 + np.std(intervals)/np.mean(intervals))
beat_consistency.append(consistency)
else:
beat_consistency.append(0)
best_idx = np.argmax(beat_consistency) if beat_consistency else 0
tempo = tempo_candidates[best_idx]
beat_frames = beat_candidates[best_idx]
# STEP 3: Performance optimization with vectorized operations
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
# Vectorized extraction of beat strengths instead of loop
beat_strengths = []
if len(beat_frames) > 0:
# Filter out beat frames that exceed the onset envelope length
valid_frames = [frame for frame in beat_frames if frame < len(combined_onset)]
if valid_frames:
# Vectorized extraction of valid beat strengths
beat_strengths = combined_onset[valid_frames].tolist()
# Handle any remaining beats
avg_strength = np.mean(beat_strengths) if beat_strengths else 1.0
beat_strengths.extend([avg_strength] * (len(beat_times) - len(beat_strengths)))
else:
beat_strengths = [1.0] * len(beat_times)
else:
beat_strengths = [1.0] * len(beat_times)
# STEP 4: Calculate intervals between beats
intervals = np.diff(beat_times).tolist() if len(beat_times) > 1 else []
# STEP 5: Improved time signature detection for various patterns
# Start with default assumption
time_signature = 4
if len(beat_strengths) > 8:
# Use autocorrelation to find periodicity in beat strengths
if len(beat_strengths) > 4:
# Normalize beat strengths for better pattern detection
norm_strengths = np.array(beat_strengths)
if np.max(norm_strengths) > 0:
norm_strengths = norm_strengths / np.max(norm_strengths)
# Compute autocorrelation to find periodic patterns (N)
ac = librosa.autocorrelate(norm_strengths, max_size=len(norm_strengths)//2)
# Find peaks in autocorrelation (indicates periodicity)
if len(ac) > 3: # Need enough data for peak picking
# Find peaks after lag 0
peaks = librosa.util.peak_pick(ac[1:], pre_max=1, post_max=1, pre_avg=1, post_avg=1, delta=0.1, wait=1)
peaks = peaks + 1 # Adjust for the removed lag 0
if len(peaks) > 0:
# Get the first significant peak position (cycle length N)
N = peaks[0]
# Map common cycle lengths to time signatures
if 2 <= N <= 3:
time_signature = N # Direct mapping for simple cases
elif N == 6:
time_signature = 3 # Could be 6/8 or 3/4 with subdivisions
elif N == 8:
time_signature = 4 # Could be 4/4 with subdivisions
elif N == 5 or N == 7:
time_signature = N # Odd time signatures like 5/4 or 7/8
# Otherwise, keep default 4
# Use adaptive thresholds for pattern detection instead of fixed values
if len(beat_strengths) > 3:
# Calculate z-scores to identify statistically significant strong beats
strengths_array = np.array(beat_strengths)
mean_strength = np.mean(strengths_array)
std_strength = np.std(strengths_array)
if std_strength > 0:
z_scores = (strengths_array - mean_strength) / std_strength
# Count beats with z-score > 1 in groups of 3 (for 3/4 time)
strong_beat_pattern = []
for i in range(0, len(z_scores) - 2, 3):
# First beat should be significantly stronger (z > 1)
# Second and third beats should be weaker
if z_scores[i] > 1 and z_scores[i+1] < 0.5 and z_scores[i+2] < 0.5:
strong_beat_pattern.append(1)
else:
strong_beat_pattern.append(0)
# Check if we have a clear 3/4 pattern
if strong_beat_pattern and len(strong_beat_pattern) >= 3:
three_pattern_probability = sum(strong_beat_pattern) / len(strong_beat_pattern)
if three_pattern_probability > 0.6:
time_signature = 3
# STEP 6: Enhanced phrase detection with adaptive thresholds
phrases = []
current_phrase = []
if len(beat_times) > 0:
# Calculate adaptive thresholds using percentiles instead of fixed ratios
if len(beat_strengths) > 4:
# Define thresholds based on distribution rather than fixed values
strong_threshold = np.percentile(beat_strengths, 75) # Top 25% are "strong" beats
# For gaps, calculate significant deviation using z-scores if we have intervals
if intervals:
mean_interval = np.mean(intervals)
std_interval = np.std(intervals)
# A significant gap is > 1.5 standard deviations above mean
significant_gap = mean_interval + (1.5 * std_interval) if std_interval > 0 else mean_interval * 1.3
else:
significant_gap = 0
else:
# Fallback for limited data
strong_threshold = np.max(beat_strengths) * 0.8 if beat_strengths else 1.0
significant_gap = 0
# Identify phrase boundaries
for i in range(len(beat_times)):
current_phrase.append(i)
# Check for phrase boundary conditions
if i < len(beat_times) - 1:
# Strong beat coming up (using adaptive threshold)
is_stronger_next = False
if i < len(beat_strengths) - 1:
is_stronger_next = beat_strengths[i+1] > strong_threshold and beat_strengths[i+1] > beat_strengths[i] * 1.1
# Significant gap (using adaptive threshold)
is_longer_gap = False
if i < len(beat_times) - 1 and intervals and i < len(intervals):
is_longer_gap = intervals[i] > significant_gap
# Measure boundary based on time signature
is_measure_boundary = (i + 1) % time_signature == 0 and i > 0
# Combined decision for phrase boundary
if ((is_stronger_next or is_longer_gap) and len(current_phrase) >= 2) or \
(is_measure_boundary and len(current_phrase) >= time_signature):
phrases.append(current_phrase)
current_phrase = []
# Add the last phrase if not empty
if current_phrase and len(current_phrase) >= 2:
phrases.append(current_phrase)
# Ensure we have at least one phrase
if not phrases and len(beat_times) >= 2:
# Default to grouping by measures based on detected time signature
for i in range(0, len(beat_times), time_signature):
end = min(i + time_signature, len(beat_times))
if end - i >= 2: # Ensure at least 2 beats per phrase
phrases.append(list(range(i, end)))
# Return in the original format for compatibility
return {
"tempo": tempo,
"beat_frames": beat_frames,
"beat_times": beat_times,
"beat_count": len(beat_times),
"beat_strengths": beat_strengths,
"intervals": intervals,
"time_signature": time_signature,
"phrases": phrases
}
def detect_sections(y, sr):
"""
Advanced detection of musical sections with adaptive segmentation and improved classification.
Parameters:
y: Audio time series
sr: Sample rate
Returns:
A list of section dictionaries with type, start time, end time, and duration
"""
# Step 1: Extract rich feature set for comprehensive analysis
# ----------------------------------------------------------------------
hop_length = 512 # Common hop length for feature extraction
# Spectral features
S = np.abs(librosa.stft(y, hop_length=hop_length))
contrast = librosa.feature.spectral_contrast(S=S, sr=sr)
# Harmonic features with CQT-based chroma (better for harmonic analysis)
chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length)
# Timbral features
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13, hop_length=hop_length)
# Energy features
rms = librosa.feature.rms(y=y, hop_length=hop_length)
# Harmonic-percussive source separation for better rhythm analysis
y_harmonic, y_percussive = librosa.effects.hpss(y)
percussive_rms = librosa.feature.rms(y=y_percussive, hop_length=hop_length)
# Step 2: Adaptive determination of segment count based on song complexity
# ----------------------------------------------------------------------
duration = librosa.get_duration(y=y, sr=sr)
# Feature preparation for adaptive segmentation
# Stack features with proper normalization (addressing the scale issue)
feature_stack = np.vstack([
librosa.util.normalize(contrast),
librosa.util.normalize(chroma),
librosa.util.normalize(mfcc),
librosa.util.normalize(rms)
])
# Transpose to get time as first dimension
feature_matrix = feature_stack.T
# Step 3: Feature fusion using dimensionality reduction (addressing simple summation issue)
# ----------------------------------------------------------------------
# Apply PCA to reduce dimensionality while preserving relationships
from sklearn.decomposition import PCA
# Handle very short audio files
n_components = min(8, feature_matrix.shape[0], feature_matrix.shape[1])
if feature_matrix.shape[0] > n_components and feature_matrix.shape[1] > 0:
try:
pca = PCA(n_components=n_components)
reduced_features = pca.fit_transform(feature_matrix)
except Exception as e:
print(f"PCA failed, falling back to original features: {e}")
# Fallback to simpler approach if PCA fails
reduced_features = feature_matrix
else:
# Not enough data for PCA
reduced_features = feature_matrix
# Step 4: Adaptive determination of optimal segment count
# ----------------------------------------------------------------------
# Initialize range of segment counts to try
min_segments = max(2, int(duration / 60)) # At least 2 segments, roughly 1 per minute
max_segments = min(10, int(duration / 20)) # At most 10 segments, roughly 1 per 20 seconds
# Ensure reasonable bounds
min_segments = max(2, min(min_segments, 4))
max_segments = max(min_segments + 1, min(max_segments, 8))
# Try different segment counts and evaluate with silhouette score
best_segments = min_segments
best_score = -1
from sklearn.metrics import silhouette_score
from sklearn.cluster import AgglomerativeClustering
# Only do this analysis if we have enough data
if reduced_features.shape[0] > max_segments:
for n_segments in range(min_segments, max_segments + 1):
try:
# Perform agglomerative clustering
clustering = AgglomerativeClustering(n_clusters=n_segments)
labels = clustering.fit_predict(reduced_features)
# Calculate silhouette score if we have enough samples
if len(np.unique(labels)) > 1 and len(labels) > n_segments + 1:
score = silhouette_score(reduced_features, labels)
if score > best_score:
best_score = score
best_segments = n_segments
except Exception as e:
print(f"Clustering with {n_segments} segments failed: {e}")
continue
# Use the optimal segment count for final segmentation
n_segments = best_segments
# Step 5: Final segmentation using the optimal segment count
# ----------------------------------------------------------------------
# Method 1: Use agglomerative clustering on the reduced features
try:
clustering = AgglomerativeClustering(n_clusters=n_segments)
labels = clustering.fit_predict(reduced_features)
# Convert cluster labels to boundaries by finding where labels change
boundaries = [0] # Start with the beginning
for i in range(1, len(labels)):
if labels[i] != labels[i-1]:
boundaries.append(i)
boundaries.append(len(labels)) # Add the end
# Convert to frames
bounds_frames = np.array(boundaries)
except Exception as e:
print(f"Final clustering failed: {e}")
# Fallback to librosa's agglomerative clustering on original features
bounds_frames = librosa.segment.agglomerative(feature_stack, n_segments)
# Step 6: Detect harmonic changes for better bridge identification
# ----------------------------------------------------------------------
# Calculate tonal centroids to identify key changes
tonnetz = librosa.feature.tonnetz(y=y_harmonic, sr=sr)
# Look for significant changes in harmonic content
harmonic_changes = []
if tonnetz.shape[1] > 1:
tonnetz_diff = np.sum(np.abs(np.diff(tonnetz, axis=1)), axis=0)
# Normalize
if np.max(tonnetz_diff) > 0:
tonnetz_diff = tonnetz_diff / np.max(tonnetz_diff)
# Identify significant harmonic changes (potential bridges or section changes)
threshold = np.percentile(tonnetz_diff, 90) # Top 10% most significant changes
for i in range(len(tonnetz_diff)):
if tonnetz_diff[i] > threshold:
harmonic_changes.append(i)
# Step 7: Convert boundaries to time and create sections
# ----------------------------------------------------------------------
bounds_times = librosa.frames_to_time(bounds_frames, sr=sr, hop_length=hop_length)
# Create sections from the boundaries
sections = []
for i in range(len(bounds_times) - 1):
start = bounds_times[i]
end = bounds_times[i+1]
duration = end - start
# Skip extremely short sections
if duration < 4 and i > 0 and i < len(bounds_times) - 2:
continue
# Step 8: Section type classification with improved musical features
# ----------------------------------------------------------------------
# Get indices for this section
start_idx = bounds_frames[i]
end_idx = bounds_frames[i+1]
# Basic section type based on position
if i == 0:
section_type = "intro"
elif i == len(bounds_times) - 2:
section_type = "outro"
else:
# Default to alternating verse/chorus
section_type = "chorus" if i % 2 == 1 else "verse"
# Only analyze characteristics if we have enough frames
if end_idx > start_idx:
# Calculate musical characteristics for this section
# 1. Energy profile
energy = np.mean(rms[0, start_idx:end_idx])
# 2. Rhythm intensity (percussive content)
rhythm_intensity = np.mean(percussive_rms[0, start_idx:end_idx])
# 3. Harmonic complexity
if chroma.shape[1] > 0:
chroma_var = np.var(chroma[:, start_idx:end_idx])
else:
chroma_var = 0
# 4. Timbral characteristics
if mfcc.shape[1] > 0:
mfcc_mean = np.mean(mfcc[:, start_idx:end_idx], axis=1)
mfcc_var = np.var(mfcc[:, start_idx:end_idx], axis=1)
else:
mfcc_mean = np.zeros(mfcc.shape[0])
mfcc_var = np.zeros(mfcc.shape[0])
# 5. Check for harmonic changes within this section (for bridge detection)
has_harmonic_change = False
for change_idx in harmonic_changes:
if start_idx <= change_idx < end_idx:
has_harmonic_change = True
break
# Calculate relative metrics by comparing to the entire song
relative_energy = energy / np.mean(rms)
relative_rhythm = rhythm_intensity / np.mean(percussive_rms)
# Improved section type classification:
# Chorus: High energy, strong rhythm, less harmonic variation
if (relative_energy > 1.1 and relative_rhythm > 1.1 and
section_type != "intro" and section_type != "outro"):
section_type = "chorus"
# Verse: Moderate energy, moderate rhythm, more harmonic variation
elif (0.8 <= relative_energy <= 1.1 and chroma_var > np.mean(np.var(chroma, axis=1)) and
section_type != "intro" and section_type != "outro"):
section_type = "verse"
# Bridge: Often has harmonic changes, energy drop, or unique timbral characteristics
if (section_type not in ["intro", "outro"] and
(has_harmonic_change or
(0.5 <= relative_energy <= 0.9 and duration < 30) or
np.any(mfcc_var > np.percentile(np.var(mfcc, axis=1), 75)))):
section_type = "bridge"
# Add section to the list
sections.append({
"type": section_type,
"start": start,
"end": end,
"duration": duration
})
# Post-processing: Ensure reasonable section sequence and durations
for i in range(1, len(sections) - 1):
# Check for unreasonably short sections and merge them
if sections[i]["duration"] < 8 and sections[i]["type"] not in ["intro", "outro", "bridge"]:
# Either merge with previous or next section based on similarity
prev_type = sections[i-1]["type"]
next_type = sections[i+1]["type"] if i+1 < len(sections) else "outro"
# Default to merging with the previous section
sections[i]["type"] = prev_type
# Filter out any remaining extremely short sections
sections = [s for s in sections if s["duration"] >= 5 or
s["type"] == "intro" or s["type"] == "outro"]
return sections
def create_flexible_syllable_templates(beats_info, genre=None, phrase_mode='default'):
"""
Create enhanced syllable templates based on beat patterns with improved musical intelligence.
Parameters:
beats_info: Dictionary containing beat analysis data
genre: Optional genre to influence template creation
phrase_mode: 'default' uses provided phrases, 'auto' forces recalculation
Returns:
String of syllable templates with embedded strength values and flexible timing
"""
import numpy as np
from sklearn.cluster import KMeans
# Extract basic beat information
beat_times = beats_info.get("beat_times", [])
beat_strengths = beats_info.get("beat_strengths", [1.0] * len(beat_times))
tempo = beats_info.get("tempo", 120)
time_signature = beats_info.get("time_signature", 4)
# Early return for insufficient data
if len(beat_times) < 2:
return "S(1.0):1-w(0.5):1|S(1.0):1-w(0.5):1" # Default fallback pattern
# Step 1: Adaptive thresholding using k-means clustering
# ----------------------------------------------------------------------
if len(beat_strengths) >= 6: # Need enough data points for clustering
# Reshape for k-means
X = np.array(beat_strengths).reshape(-1, 1)
# Use k-means with 3 clusters for Strong, Medium, Weak classification
kmeans = KMeans(n_clusters=3, random_state=0, n_init=10).fit(X)
# Find the centroid values and sort them
centroids = sorted([float(c[0]) for c in kmeans.cluster_centers_])
# Map to thresholds (using the midpoints between centroids)
if len(centroids) >= 3:
medium_threshold = (centroids[0] + centroids[1]) / 2
strong_threshold = (centroids[1] + centroids[2]) / 2
else:
# Fallback if clustering doesn't work well
medium_threshold = np.percentile(beat_strengths, 33)
strong_threshold = np.percentile(beat_strengths, 66)
else:
# For limited data, use percentile-based approach
medium_threshold = np.percentile(beat_strengths, 33)
strong_threshold = np.percentile(beat_strengths, 66)
# Step 2: Create or refine phrases based on mode
# ----------------------------------------------------------------------
phrases = beats_info.get("phrases", [])
if phrase_mode == 'auto' or not phrases:
# Create phrases based on time signature and beat strengths
phrases = []
current_phrase = []
for i in range(len(beat_times)):
current_phrase.append(i)
# Check for natural phrase endings
if (i + 1) % time_signature == 0 or i == len(beat_times) - 1:
if len(current_phrase) >= 2: # Ensure minimum phrase length
phrases.append(current_phrase)
current_phrase = []
# Add any remaining beats
if current_phrase and len(current_phrase) >= 2:
phrases.append(current_phrase)
# Step 3: Calculate continuous tempo-to-syllable mapping function
# ----------------------------------------------------------------------
def tempo_to_syllable_base(tempo):
"""Continuous function mapping tempo to syllable base count"""
# Sigmoid-like function that smoothly transitions between syllable counts
if tempo > 180:
return 1.0
elif tempo > 140:
return 1.0 + (180 - tempo) * 0.02 # Gradual increase 1.0 → 1.8
elif tempo > 100:
return 1.8 + (140 - tempo) * 0.01 # Gradual increase 1.8 → 2.2
elif tempo > 70:
return 2.2 + (100 - tempo) * 0.02 # Gradual increase 2.2 → 2.8
else:
return 2.8 + max(0, (70 - tempo) * 0.04) # Continue increasing for very slow tempos
# Step 4: Generate enhanced templates with flexible timing
# ----------------------------------------------------------------------
syllable_templates = []
for phrase in phrases:
# Skip empty phrases
if not phrase:
continue
# Extract beat strengths for this phrase
phrase_strengths = [beat_strengths[i] for i in phrase if i < len(beat_strengths)]
if not phrase_strengths:
phrase_strengths = [1.0] * len(phrase)
# Apply adaptive thresholding for stress pattern detection
stress_pattern = []
for i, strength in enumerate(phrase_strengths):
# Consider both strength and metrical position
metrical_position = i % time_signature
# Apply positional boost for strong metrical positions
position_boost = 0.15 if metrical_position == 0 else 0
# Secondary stress on beat 3 in 4/4 time
if time_signature == 4 and metrical_position == 2:
position_boost = 0.08
effective_strength = strength + position_boost
if effective_strength >= strong_threshold:
stress_pattern.append(("S", effective_strength)) # Strong beat with strength
elif effective_strength >= medium_threshold:
stress_pattern.append(("m", effective_strength)) # Medium beat with strength
else:
stress_pattern.append(("w", effective_strength)) # Weak beat with strength
# Step 5: Calculate syllable counts using continuous function
# ----------------------------------------------------------------------
detailed_template = []
for i, (stress_type, strength) in enumerate(stress_pattern):
# Get base syllable count from tempo
base_syllables = tempo_to_syllable_base(tempo)
# Adjust based on stress type
if stress_type == "S":
syllable_factor = 1.2 # More syllables for strong beats
elif stress_type == "m":
syllable_factor = 1.0 # Normal for medium beats
else:
syllable_factor = 0.8 # Fewer for weak beats
# Apply genre-specific adjustments
genre_factor = 1.0
if genre:
genre = genre.lower()
if any(term in genre for term in ["rap", "hip hop", "hip-hop"]):
genre_factor = 1.4 # Much higher syllable density for rap
elif any(term in genre for term in ["folk", "country", "ballad"]):
genre_factor = 0.8 # Lower density for folk styles
# Calculate adjusted syllable count
raw_count = base_syllables * syllable_factor * genre_factor
# Allow for more flexible syllable counts with non-integer values
# Round to multiples of 0.5 for half-syllable precision
rounded_count = round(raw_count * 2) / 2
# Limit to reasonable range (0.5 to 4)
syllable_count = max(0.5, min(4, rounded_count))
# Format with embedded strength value for reversibility
# Convert strength to 2-decimal precision percentage
strength_pct = int(strength * 100) / 100
detailed_template.append(f"{stress_type}({strength_pct}):{syllable_count}")
# Join beat templates for this phrase
phrase_template = "-".join(detailed_template)
syllable_templates.append(phrase_template)
# Step 6: Ensure valid output with reasonable defaults
# ----------------------------------------------------------------------
if not syllable_templates:
# Create a sensible default based on time signature
if time_signature == 3:
syllable_templates = ["S(0.95):2-w(0.4):1-w(0.35):1"] # 3/4 default
else:
syllable_templates = ["S(0.95):2-w(0.4):1-m(0.7):1.5-w(0.35):1"] # 4/4 default
# Join all phrase templates with the original separator for compatibility
return "|".join(syllable_templates)
def format_syllable_templates_for_prompt(syllable_templates, arrow="→", line_wrap=10,
structured_output=False, beat_types=None):
"""
Convert technical syllable templates into clear, human-readable instructions with
enhanced flexibility and customization options.
Parameters:
syllable_templates: String or list of templates
arrow: Symbol to use between beats (default: "→")
line_wrap: Number of beats before automatic line wrapping (0 = no wrapping)
structured_output: If True, return structured data instead of text
beat_types: Custom mapping for beat types (default: None, uses standard mapping)
Returns:
Human-readable instructions or structured data depending on parameters
"""
if not syllable_templates:
return {} if structured_output else ""
# Define standard beat type mapping (extensible)
default_beat_types = {
"S": {"name": "STRONG", "description": "stressed syllable"},
"m": {"name": "medium", "description": "medium-stressed syllable"},
"w": {"name": "weak", "description": "unstressed syllable"},
"X": {"name": "EXTRA", "description": "extra strong syllable"},
"L": {"name": "legato", "description": "connected/tied syllable"}
}
# Use custom mapping if provided, otherwise use default
beat_types = beat_types or default_beat_types
# Initialize structured output if requested
structured_data = {"lines": [], "explanations": []} if structured_output else None
# Improved format detection - more robust than just checking for "|"
is_enhanced_format = False
# Check if it's a string with enhanced format patterns
if isinstance(syllable_templates, str):
# Look for enhanced format patterns - check for beat type indicators
if any(bt + "(" in syllable_templates or bt + ":" in syllable_templates or bt + "[" in syllable_templates
for bt in beat_types.keys()):
is_enhanced_format = True
# Secondary check for the "|" delimiter between phrases
elif "|" in syllable_templates:
is_enhanced_format = True
# Initialize the output with a brief explanatory header
output = []
if is_enhanced_format:
# Split into individual phrase templates
phrases = syllable_templates.split("|") if "|" in syllable_templates else [syllable_templates]
# Process each phrase into human-readable instructions
for i, phrase in enumerate(phrases):
# Check for special annotations
has_swing = "(swing)" in phrase
if has_swing:
phrase = phrase.replace("(swing)", "") # Remove annotation for processing
beats = phrase.split("-")
beat_instructions = []
# Process each beat in the phrase
for j, beat in enumerate(beats):
# Extract beat type and information
beat_info = {"original": beat, "type": None, "count": None, "strength": None}
# Handle enhanced format with embedded strength values: S(0.95):2
if "(" in beat and ")" in beat and ":" in beat:
parts = beat.split(":")
beat_type = parts[0].split("(")[0] # Extract beat type
strength = parts[0].split("(")[1].rstrip(")") # Extract strength value
count = parts[1] # Extract syllable count
beat_info["type"] = beat_type
beat_info["count"] = count
beat_info["strength"] = strength
# Handle simpler format: S2, m1, w1
elif any(beat.startswith(bt) for bt in beat_types.keys()) and len(beat) > 1:
beat_type = beat[0]
count = beat[1:]
beat_info["type"] = beat_type
beat_info["count"] = count
# Fallback for any other format
else:
beat_instructions.append(beat)
continue
# Format the beat instruction based on type
if beat_info["type"] in beat_types:
type_name = beat_types[beat_info["type"]]["name"]
if beat_info["strength"]:
beat_instructions.append(f"{type_name}({beat_info['count']}) [{beat_info['strength']}]")
else:
beat_instructions.append(f"{type_name}({beat_info['count']})")
else:
# Unknown beat type, use as-is
beat_instructions.append(beat)
# Handle line wrapping for readability
if line_wrap > 0 and len(beat_instructions) > line_wrap:
wrapped_instructions = []
for k in range(0, len(beat_instructions), line_wrap):
section = beat_instructions[k:k+line_wrap]
wrapped_instructions.append(f"{arrow} ".join(section))
line_desc = f"\n {arrow} ".join(wrapped_instructions)
else:
line_desc = f" {arrow} ".join(beat_instructions)
# Add swing notation if present
if has_swing:
line_desc += " [with swing feel]"
# Add to output
line_output = f"Line {i+1}: {line_desc}"
output.append(line_output)
if structured_output:
structured_data["lines"].append({
"line_number": i+1,
"beats": [{"original": beats[j],
"type": beat_info.get("type"),
"count": beat_info.get("count"),
"strength": beat_info.get("strength")}
for j, beat_info in enumerate([b for b in beats if isinstance(b, dict)])],
"has_swing": has_swing
})
# Add explanation of notation after the lines
explanation = [
"\n📝 UNDERSTANDING THE NOTATION:"
]
# Add descriptions for each beat type that was actually used
used_beat_types = set()
for phrase in phrases:
for beat in phrase.split("-"):
for bt in beat_types.keys():
if beat.startswith(bt):
used_beat_types.add(bt)
for bt in used_beat_types:
if bt in beat_types:
name = beat_types[bt]["name"]
desc = beat_types[bt]["description"]
explanation.append(f"- {name}(n): Place a {desc} here, plus (n-1) unstressed syllables")
explanation.extend([
f"- {arrow}: Indicates flow from one beat to the next",
"- [0.xx]: Beat strength value (higher = more emphasis needed)"
])
output.extend(explanation)
if structured_output:
structured_data["explanations"] = explanation
# Add examples for half-syllable values if they appear in the templates
has_half_syllables = any((".5" in beat) for phrase in phrases for beat in phrase.split("-"))
if has_half_syllables:
half_syllable_examples = [
"\n🎵 HALF-SYLLABLE EXAMPLES:",
"- STRONG(1.5): One stressed syllable followed by an unstressed half-syllable",
" Example: \"LOVE you\" where \"LOVE\" is stressed and \"you\" is quick",
"- medium(2.5): One medium syllable plus one-and-a-half unstressed syllables",
" Example: \"Wait for the\" where \"Wait\" is medium-stressed and \"for the\" is quick"
]
output.extend(half_syllable_examples)
if structured_output:
structured_data["half_syllable_examples"] = half_syllable_examples
# Add swing explanation if needed
if any("swing" in phrase for phrase in phrases):
swing_guide = [
"\n🎶 SWING RHYTHM GUIDE:",
"- In swing, syllables should be unevenly timed (long-short pattern)",
"- Example: \"SUM-mer TIME\" in swing feels like \"SUM...mer-TIME\" with delay"
]
output.extend(swing_guide)
if structured_output:
structured_data["swing_guide"] = swing_guide
# Handle the original format or segment dictionaries
else:
formatted_lines = []
if isinstance(syllable_templates, list):
for i, template in enumerate(syllable_templates):
if isinstance(template, dict) and "syllable_template" in template:
line = f"Line {i+1}: {template['syllable_template']} syllables"
formatted_lines.append(line)
if structured_output:
structured_data["lines"].append({
"line_number": i+1,
"syllable_count": template["syllable_template"]
})
elif isinstance(template, str):
line = f"Line {i+1}: {template} syllables"
formatted_lines.append(line)
if structured_output:
structured_data["lines"].append({
"line_number": i+1,
"syllable_count": template
})
output = formatted_lines
else:
output = [str(syllable_templates)]
if structured_output:
structured_data["raw_content"] = str(syllable_templates)
# Add general application advice
application_tips = [
"\n💡 APPLICATION TIPS:",
"1. Strong beats need naturally stressed syllables (like the START of \"RE-mem-ber\")",
"2. Place important words on strong beats for natural emphasis",
"3. Vowel sounds work best for sustained or emphasized syllables",
"4. Keep consonant clusters (like \"str\" or \"thr\") on weak beats"
]
output.extend(application_tips)
if structured_output:
structured_data["application_tips"] = application_tips
return structured_data
return "\n".join(output)
def verify_flexible_syllable_counts(lyrics, templates):
"""
Enhanced verification of syllable counts and stress patterns with precise alignment analysis
and detailed feedback for all phrases in a template.
"""
import re
import pronouncing
import numpy as np
import functools
from itertools import chain
# Apply caching to improve performance for repeated word lookups
@functools.lru_cache(maxsize=512)
def cached_phones_for_word(word):
return pronouncing.phones_for_word(word)
@functools.lru_cache(maxsize=512)
def count_syllables_for_word(word):
"""Count syllables in a single word with caching for performance."""
# Try using pronouncing library first
pronunciations = cached_phones_for_word(word.lower())
if pronunciations:
return pronouncing.syllable_count(pronunciations[0])
# Fallback method for words not in the pronouncing dictionary
vowels = "aeiouy"
word = word.lower()
count = 0
prev_is_vowel = False
for char in word:
is_vowel = char in vowels
if is_vowel and not prev_is_vowel:
count += 1
prev_is_vowel = is_vowel
# Handle special cases
if word.endswith('e') and not word.endswith('le'):
count -= 1
if word.endswith('le') and len(word) > 2 and word[-3] not in vowels:
count += 1
if count == 0:
count = 1
return count
@functools.lru_cache(maxsize=512)
def get_word_stress(word):
"""Get the stress pattern for a word with improved fallback handling."""
pronunciations = cached_phones_for_word(word.lower())
if pronunciations:
return pronouncing.stresses(pronunciations[0])
# Enhanced fallback for words not in the dictionary
syllables = count_syllables_for_word(word)
# Common English stress patterns by word length
if syllables == 1:
return "1" # Single syllable words are stressed
elif syllables == 2:
# Most 2-syllable nouns and adjectives stress first syllable
# Common endings that indicate second-syllable stress
second_syllable_stress = ["ing", "er", "or", "ize", "ise", "ate", "ect", "end", "ure"]
if any(word.endswith(ending) for ending in second_syllable_stress):
return "01"
else:
return "10" # Default for 2-syllable words
elif syllables == 3:
# Common endings for specific stress patterns in 3-syllable words
if any(word.endswith(ending) for ending in ["ity", "ety", "ify", "ogy", "graphy"]):
return "100" # First syllable stress
elif any(word.endswith(ending) for ending in ["ation", "ious", "itis"]):
return "010" # Middle syllable stress
else:
return "100" # Default for 3-syllable words
else:
# For longer words, use common English patterns
return "1" + "0" * (syllables - 1)
# Split lyrics into lines
lines = [line.strip() for line in lyrics.split("\n") if line.strip()]
# Initialize tracking variables
verification_notes = []
detailed_analysis = []
stress_misalignments = []
total_mismatch_count = 0
# Process each lyric line against its template
for i, line in enumerate(lines):
if i >= len(templates):
break
template = templates[i]
# Extract the template string from different possible formats
if isinstance(template, dict) and "syllable_template" in template:
template_str = template["syllable_template"]
elif isinstance(template, str):
template_str = template
else:
continue
# Handle multiple phrases in template - process ALL phrases, not just the first
template_phrases = [template_str]
if "|" in template_str:
template_phrases = template_str.split("|")
# Check against all phrases and find the best match
best_match_diff = float('inf')
best_match_phrase = None
best_phrase_beats = None
actual_count = count_syllables(line)
for phrase_idx, phrase in enumerate(template_phrases):
# Extract beat patterns and expected syllable counts from template
beats_info = []
total_expected = 0
# Enhanced template parsing
if "-" in phrase:
beat_templates = phrase.split("-")
# Parse each beat template
for beat in beat_templates:
beat_info = {"original": beat, "type": None, "count": 1, "strength": None}
# Handle templates with embedded strength values: S(0.95):2
if "(" in beat and ")" in beat and ":" in beat:
parts = beat.split(":")
beat_type = parts[0].split("(")[0]
try:
strength = float(parts[0].split("(")[1].rstrip(")"))
except ValueError:
strength = 1.0
# Handle potential float syllable counts
try:
count = float(parts[1])
# Convert to int if it's a whole number
if count == int(count):
count = int(count)
except ValueError:
count = 1
beat_info.update({
"type": beat_type,
"count": count,
"strength": strength
})
# Handle simple format: S2, m1, w1
elif any(beat.startswith(x) for x in ["S", "m", "w", "X", "L"]):
beat_type = beat[0]
# Extract count, supporting float values
try:
count_str = beat[1:]
count = float(count_str)
if count == int(count):
count = int(count)
except ValueError:
count = 1
beat_info.update({
"type": beat_type,
"count": count
})
# Legacy format - just numbers
else:
try:
count = float(beat)
if count == int(count):
count = int(count)
beat_info["count"] = count
except ValueError:
pass
beats_info.append(beat_info)
total_expected += beat_info["count"]
# Compare this phrase to actual syllable count
phrase_diff = abs(actual_count - total_expected)
# Adaptive threshold based on expected syllables
expected_ratio = 0.15 if total_expected > 10 else 0.25
phrase_threshold = max(1, round(total_expected * expected_ratio))
# If this is the best match so far, store it
if phrase_diff < best_match_diff:
best_match_diff = phrase_diff
best_match_phrase = phrase
best_phrase_beats = beats_info
# For very simple templates without "-"
else:
try:
total_expected = float(phrase)
phrase_diff = abs(actual_count - total_expected)
if phrase_diff < best_match_diff:
best_match_diff = phrase_diff
best_match_phrase = phrase
best_phrase_beats = [{"count": total_expected}]
except ValueError:
pass
# If we found a reasonable match, proceed with analysis
if best_match_phrase and best_phrase_beats:
total_expected = sum(beat["count"] for beat in best_phrase_beats)
# Calculate adaptive threshold based on expected syllables
expected_ratio = 0.15 if total_expected > 10 else 0.25
threshold = max(1, round(total_expected * expected_ratio))
# Check if total syllable count is significantly off
if total_expected > 0 and best_match_diff > threshold:
verification_notes.append(f"Line {i+1}: Expected {total_expected} syllables, got {actual_count}")
total_mismatch_count += 1
# Extract words and perform detailed alignment analysis
words = re.findall(r'\b[a-zA-Z]+\b', line.lower())
# Get syllable count and stress for each word
word_analysis = []
cumulative_syllables = 0
for word in words:
syllable_count = count_syllables_for_word(word)
# Get stress pattern
stress_pattern = get_word_stress(word)
word_analysis.append({
"word": word,
"syllables": syllable_count,
"stress_pattern": stress_pattern,
"position": cumulative_syllables
})
cumulative_syllables += syllable_count
# Analyze alignment with beats - only if there are beat types
if best_phrase_beats and any(b.get("type") == "S" for b in best_phrase_beats if "type" in b):
# Identify positions where strong syllables should fall
strong_positions = []
current_pos = 0
for beat in best_phrase_beats:
if beat.get("type") == "S":
strong_positions.append(current_pos)
current_pos += beat.get("count", 1)
# Check if strong syllables align with strong beats
alignment_issues = []
for pos in strong_positions:
# Find which word contains this position
misaligned_word = None
for word_info in word_analysis:
word_start = word_info["position"]
word_end = word_start + word_info["syllables"]
if word_start <= pos < word_end:
# Check if a stressed syllable falls on this position
syllable_in_word = pos - word_start
# Get stress pattern for this word
stress = word_info["stress_pattern"]
# If we have stress information and this syllable isn't stressed
if stress and syllable_in_word < len(stress) and stress[syllable_in_word] != '1':
misaligned_word = word_info["word"]
alignment_issues.append(f"'{word_info['word']}' (unstressed syllable on strong beat)")
stress_misalignments.append({
"line": i+1,
"word": word_info["word"],
"position": pos,
"suggestion": get_stress_aligned_alternatives(word_info["word"], syllable_in_word)
})
break
if alignment_issues:
verification_notes.append(f" → Stress misalignments: {', '.join(alignment_issues)}")
# Generate a visual alignment map for better understanding
alignment_map = generate_alignment_visualization(line, best_phrase_beats, word_analysis)
if alignment_map:
detailed_analysis.append(f"Line {i+1} Alignment Analysis:\n{alignment_map}")
else:
# If no matching template was found
verification_notes.append(f"Line {i+1}: Unable to find matching template pattern")
# Only add detailed analysis if we have rhythm mismatches
if verification_notes:
lyrics += "\n\n[Note: Potential rhythm mismatches detected in these lines:]\n"
lyrics += "\n".join(verification_notes)
if detailed_analysis:
lyrics += "\n\n[Detailed Alignment Analysis:]\n"
lyrics += "\n\n".join(detailed_analysis)
lyrics += "\n\n[How to fix rhythm mismatches:]\n"
lyrics += "1. Make sure stressed syllables (like 'LO' in 'LOV-er') fall on STRONG beats\n"
lyrics += "2. Adjust syllable counts to match the template (add/remove words or use different words)\n"
lyrics += "3. Try using words where natural stress aligns with musical rhythm\n"
# Add specific word substitution suggestions if we found stress misalignments
if stress_misalignments:
lyrics += "\n[Specific word replacement suggestions:]\n"
for issue in stress_misalignments[:5]: # Limit to first 5 issues
if issue["suggestion"]:
lyrics += f"Line {issue['line']}: Consider replacing '{issue['word']}' with: {issue['suggestion']}\n"
return lyrics
def generate_alignment_visualization(line, beats_info, word_analysis):
"""Generate a visual representation of syllable alignment with beats."""
if not beats_info or not word_analysis:
return None
# Create a syllable breakdown with stress information
syllable_breakdown = []
syllable_stresses = []
for word_info in word_analysis:
word = word_info["word"]
syllables = word_info["syllables"]
stress = word_info["stress_pattern"] or ""
# Extend stress pattern if needed
while len(stress) < syllables:
stress += "0"
# Get syllable breakdown
parts = naive_syllable_split(word, syllables)
for i, part in enumerate(parts):
syllable_breakdown.append(part)
if i < len(stress):
syllable_stresses.append(stress[i])
else:
syllable_stresses.append("0")
# Create beat pattern
beat_types = []
current_pos = 0
for beat in beats_info:
beat_type = beat.get("type", "-")
count = beat.get("count", 1)
# Handle whole numbers and half syllables
if isinstance(count, int):
beat_types.extend([beat_type] * count)
else:
# For half syllables, round up and use markers
whole_part = int(count)
frac_part = count - whole_part
if whole_part > 0:
beat_types.extend([beat_type] * whole_part)
if frac_part > 0:
beat_types.append(f"{beat_type}½")
# Ensure we have enough beat types
while len(beat_types) < len(syllable_breakdown):
beat_types.append("-")
# Trim beat types if too many
beat_types = beat_types[:len(syllable_breakdown)]
# Generate the visualization with highlighted misalignments
result = []
# First line: syllable breakdown with stress indicators
syllable_display = []
for i, syllable in enumerate(syllable_breakdown):
if i < len(syllable_stresses) and syllable_stresses[i] == "1":
syllable_display.append(syllable.upper()) # Uppercase for stressed syllables
else:
syllable_display.append(syllable.lower()) # Lowercase for unstressed
result.append(" - ".join(syllable_display))
# Second line: beat indicators with highlighting for misalignments
beat_indicators = []
for i, (syllable, beat_type) in enumerate(zip(syllable_stresses, beat_types)):
if beat_type == "S" or beat_type.startswith("S"):
if syllable == "1":
beat_indicators.append("↑") # Aligned strong beat
else:
beat_indicators.append("❌") # Misaligned strong beat
elif beat_type == "m" or beat_type.startswith("m"):
beat_indicators.append("•") # Medium beat
elif beat_type == "w" or beat_type.startswith("w"):
beat_indicators.append("·") # Weak beat
else:
beat_indicators.append(" ")
result.append(" ".join(beat_indicators))
# Third line: beat types
result.append(" - ".join(beat_types))
return "\n".join(result)
@functools.lru_cache(maxsize=256)
def naive_syllable_split(word, syllable_count):
"""Naively split a word into the specified number of syllables, with caching for performance."""
if syllable_count <= 1:
return [word]
# Common syllable break patterns
vowels = "aeiouy"
consonants = "bcdfghjklmnpqrstvwxz"
# Find potential split points
splits = []
for i in range(1, len(word) - 1):
if word[i] in consonants and word[i-1] in vowels:
splits.append(i)
elif word[i] in vowels and word[i-1] in consonants and word[i+1] in consonants:
splits.append(i+1)
# Ensure we have enough split points
while len(splits) < syllable_count - 1:
for i in range(1, len(word)):
if i not in splits:
splits.append(i)
break
# Sort and limit
splits.sort()
splits = splits[:syllable_count - 1]
# Split the word
result = []
prev = 0
for pos in splits:
result.append(word[prev:pos])
prev = pos
result.append(word[prev:])
return result
def get_stress_aligned_alternatives(word, position_to_stress):
"""Suggest alternative words with proper stress at the required position."""
# This would ideally use a more sophisticated dictionary lookup,
# but here's a simple implementation with common word patterns
syllable_count = count_syllables_for_word(word)
# Common synonyms/replacements by syllable count with stress position
if syllable_count == 2:
if position_to_stress == 0: # Need stress on first syllable
first_stress = ["love-ly", "won-der", "beau-ty", "danc-ing", "dream-ing",
"heart-beat", "sun-light", "moon-light", "star-light"]
return ", ".join(first_stress[:3])
else: # Need stress on second syllable
second_stress = ["be-LIEVE", "a-BOVE", "a-ROUND", "to-DAY", "a-LIVE",
"a-LONE", "be-HOLD", "re-TURN", "de-LIGHT"]
return ", ".join(second_stress[:3])
elif syllable_count == 3:
if position_to_stress == 0: # First syllable stress
return "MEM-o-ry, WON-der-ful, BEAU-ti-ful"
elif position_to_stress == 1: # Second syllable stress
return "a-MAZE-ing, to-GE-ther, for-EV-er"
else: # Third syllable stress
return "un-der-STAND, o-ver-COME, ne-ver-MORE"
# For other cases, just provide general guidance
return f"a word with stress on syllable {position_to_stress + 1}"
def generate_lyrics(genre, duration, emotion_results, song_structure=None):
"""
Generate lyrics based on the genre, emotion, and structure analysis with enhanced rhythmic alignment.
This improved version uses advanced template creation, better formatting, and verification with
potential refinement for lyrics that perfectly match the musical rhythm patterns.
Parameters:
genre: Musical genre of the audio
duration: Duration of the audio in seconds
emotion_results: Dictionary containing emotional analysis results
song_structure: Optional dictionary containing song structure analysis
Returns:
Generated lyrics aligned with the rhythm patterns of the music
"""
# Extract emotion and theme data from analysis results
primary_emotion = emotion_results["emotion_analysis"]["primary_emotion"]
primary_theme = emotion_results["theme_analysis"]["primary_theme"]
# Extract numeric values safely with fallbacks
try:
tempo = float(emotion_results["rhythm_analysis"]["tempo"])
except (KeyError, ValueError, TypeError):
tempo = 0.0
key = emotion_results["tonal_analysis"]["key"]
mode = emotion_results["tonal_analysis"]["mode"]
# Format syllable templates for the prompt
syllable_guidance = ""
templates_for_verification = []
# Create a structure visualization to help with lyrics-music matching
structure_visualization = "=== MUSIC-LYRICS STRUCTURE MATCHING ===\n\n"
structure_visualization += f"Song Duration: {duration:.1f} seconds\n"
structure_visualization += f"Tempo: {tempo:.1f} BPM\n\n"
if song_structure:
# Try to use flexible structure if available
if "flexible_structure" in song_structure and song_structure["flexible_structure"]:
flexible = song_structure["flexible_structure"]
if "segments" in flexible and flexible["segments"]:
# Get the segments
segments = flexible["segments"]
# Add structure visualization
structure_visualization += f"Total segments: {len(segments)}\n"
structure_visualization += "Each segment represents one musical phrase for which you should write ONE line of lyrics.\n\n"
# Process each segment to create enhanced rhythmic templates
enhanced_templates = []
for i, segment in enumerate(segments):
if i < 30: # Extend limit to 30 lines to handle longer songs
# Get the beat information for this segment
segment_start = segment["start"]
segment_end = segment["end"]
# Add segment info to visualization
structure_visualization += f"Segment {i+1}: {segment_start:.1f}s - {segment_end:.1f}s (duration: {segment_end-segment_start:.1f}s)\n"
# Find beats within this segment
segment_beats = []
beat_times = flexible["beats"]["beat_times"]
beat_strengths = flexible["beats"].get("beat_strengths", [])
for j, beat_time in enumerate(beat_times):
if segment_start <= beat_time < segment_end:
# Add this beat to the segment
segment_beats.append(j)
# Create segment-specific beat info
segment_beats_info = {
"beat_times": [beat_times[j] for j in segment_beats],
"tempo": flexible["beats"].get("tempo", 120)
}
if beat_strengths:
segment_beats_info["beat_strengths"] = [
beat_strengths[j] for j in segment_beats
if j < len(beat_strengths)
]
# Create a phrase structure for this segment
segment_beats_info["phrases"] = [segment_beats]
# Generate enhanced template with genre awareness and auto phrasing
enhanced_template = create_flexible_syllable_templates(
segment_beats_info,
genre=genre,
phrase_mode='auto' if i == 0 else 'default'
)
enhanced_templates.append(enhanced_template)
templates_for_verification.append(enhanced_template)
# Add template to visualization
structure_visualization += f" Template: {enhanced_template}\n"
# Use these templates to determine verse/chorus structure based on similar patterns
# This is a simple version - could be enhanced with more sophisticated pattern detection
section_types = []
pattern_groups = {}
for i, template in enumerate(enhanced_templates):
# Create simplified version for pattern matching
simple_pattern = template.replace("(", "").replace(")", "").replace(":", "")
# Check if this pattern is similar to any we've seen
found_match = False
for group, patterns in pattern_groups.items():
if any(simple_pattern == p.replace("(", "").replace(")", "").replace(":", "") for p in patterns):
pattern_groups[group].append(template)
section_types.append(group)
found_match = True
break
if not found_match:
# New pattern type
group_name = f"Group_{len(pattern_groups) + 1}"
pattern_groups[group_name] = [template]
section_types.append(group_name)
# Map pattern groups to verse/chorus/bridge based on common structures
section_mapping = {}
if len(pattern_groups) >= 1:
# Assume the most common pattern is the verse
most_common = max(pattern_groups.items(), key=lambda x: len(x[1]))[0]
section_mapping[most_common] = "verse"
if len(pattern_groups) >= 2:
# Second most common might be chorus
sorted_groups = sorted(pattern_groups.items(), key=lambda x: len(x[1]), reverse=True)
if len(sorted_groups) > 1:
section_mapping[sorted_groups[1][0]] = "chorus"
if len(pattern_groups) >= 3:
# Third pattern could be bridge
sorted_groups = sorted(pattern_groups.items(), key=lambda x: len(x[1]), reverse=True)
if len(sorted_groups) > 2:
section_mapping[sorted_groups[2][0]] = "bridge"
# Update section types using the mapping
mapped_section_types = []
for section_type in section_types:
if section_type in section_mapping:
mapped_section_types.append(section_mapping[section_type])
else:
mapped_section_types.append("verse") # Default to verse
# Add structure visualization with section types
structure_visualization += "\nPredicted Song Structure:\n"
for i, section_type in enumerate(mapped_section_types):
if i < len(enhanced_templates):
structure_visualization += f"Line {i+1}: [{section_type.upper()}] {enhanced_templates[i]}\n"
# Calculate total line count
total_lines = len(enhanced_templates)
verse_lines = mapped_section_types.count("verse")
chorus_lines = mapped_section_types.count("chorus")
bridge_lines = mapped_section_types.count("bridge")
# Add summary
structure_visualization += f"\nTotal Lines Required: {total_lines}\n"
structure_visualization += f"Verse Lines: {verse_lines}\n"
structure_visualization += f"Chorus Lines: {chorus_lines}\n"
structure_visualization += f"Bridge Lines: {bridge_lines}\n"
# Format templates with improved formatting for the prompt
syllable_guidance = "CRITICAL RHYTHM INSTRUCTIONS:\n"
syllable_guidance += "Each line of lyrics MUST match exactly with one musical phrase/segment.\n"
syllable_guidance += "Follow these rhythm patterns for each line (STRONG beats need stressed syllables):\n\n"
# Add section headers to formatted templates
formatted_templates = []
for i, template in enumerate(enhanced_templates):
if i < len(mapped_section_types):
section_type = mapped_section_types[i].upper()
if i > 0 and mapped_section_types[i] != mapped_section_types[i-1]:
# New section
formatted_templates.append(f"\n[{section_type}]")
elif i == 0:
# First section
formatted_templates.append(f"[{section_type}]")
formatted_templates.append(format_syllable_templates_for_prompt([template], arrow="→", line_wrap=8))
syllable_guidance += "\n".join(formatted_templates)
# Store info for later use in traditional sections approach
use_sections = True
# Use the detected section structure for traditional approach
if verse_lines > 0:
verse_lines = min(verse_lines, total_lines // 2) # Ensure reasonable limits
else:
verse_lines = total_lines // 2
if chorus_lines > 0:
chorus_lines = min(chorus_lines, total_lines // 3)
else:
chorus_lines = total_lines // 3
if bridge_lines > 0:
bridge_lines = min(bridge_lines, total_lines // 6)
else:
bridge_lines = 0
# Fallback to traditional sections if needed
elif "syllables" in song_structure and song_structure["syllables"]:
syllable_guidance = "RHYTHM PATTERN INSTRUCTIONS:\n"
syllable_guidance += "Follow these syllable patterns for each section. Each line should match ONE phrase:\n\n"
# Count sections for visualization
section_counts = {"verse": 0, "chorus": 0, "bridge": 0, "intro": 0, "outro": 0}
for section in song_structure["syllables"]:
section_counts[section["type"]] = section_counts.get(section["type"], 0) + 1
if "syllable_template" in section:
# Process to create enhanced template
section_beats_info = {
"beat_times": [beat for beat in song_structure["beats"]["beat_times"]
if section["start"] <= beat < section["end"]],
"tempo": song_structure["beats"].get("tempo", 120)
}
if "beat_strengths" in song_structure["beats"]:
section_beats_info["beat_strengths"] = [
strength for i, strength in enumerate(song_structure["beats"]["beat_strengths"])
if i < len(song_structure["beats"]["beat_times"]) and
section["start"] <= song_structure["beats"]["beat_times"][i] < section["end"]
]
# Create a phrase structure for this section
section_beats_info["phrases"] = [list(range(len(section_beats_info["beat_times"])))]
# Generate enhanced template with genre awareness
enhanced_template = create_flexible_syllable_templates(
section_beats_info,
genre=genre,
phrase_mode='auto' if section['type'] == 'verse' else 'default'
)
syllable_guidance += f"[{section['type'].capitalize()}]:\n"
syllable_guidance += format_syllable_templates_for_prompt(
enhanced_template,
arrow="→",
line_wrap=6
) + "\n\n"
templates_for_verification.append(section)
elif "syllable_count" in section:
syllable_guidance += f"[{section['type'].capitalize()}]: ~{section['syllable_count']} syllables total\n"
# Create structure visualization
structure_visualization += "Using traditional section-based structure:\n"
for section_type, count in section_counts.items():
if count > 0:
structure_visualization += f"{section_type.capitalize()}: {count} sections\n"
# Set traditional section counts
verse_lines = max(2, section_counts.get("verse", 0) * 4)
chorus_lines = max(2, section_counts.get("chorus", 0) * 4)
bridge_lines = max(0, section_counts.get("bridge", 0) * 2)
# Use sections approach
use_sections = True
# If we couldn't get specific templates, use general guidance
if not syllable_guidance:
syllable_guidance = "RHYTHM ALIGNMENT INSTRUCTIONS:\n\n"
syllable_guidance += "1. Align stressed syllables with strong beats (usually beats 1 and 3 in 4/4 time)\n"
syllable_guidance += "2. Use unstressed syllables on weak beats (usually beats 2 and 4 in 4/4 time)\n"
syllable_guidance += "3. Use appropriate syllable counts based on tempo:\n"
syllable_guidance += " - Fast tempo (>120 BPM): 4-6 syllables per line\n"
syllable_guidance += " - Medium tempo (90-120 BPM): 6-8 syllables per line\n"
syllable_guidance += " - Slow tempo (<90 BPM): 8-10 syllables per line\n"
# Create basic structure visualization
structure_visualization += "Using estimated structure (no detailed analysis available):\n"
# Calculate rough section counts based on duration
estimated_lines = max(8, int(duration / 10))
structure_visualization += f"Estimated total lines: {estimated_lines}\n"
# Set traditional section counts based on duration
verse_lines = estimated_lines // 2
chorus_lines = estimated_lines // 3
bridge_lines = estimated_lines // 6 if estimated_lines > 12 else 0
# Use sections approach
use_sections = True
# Add examples of syllable-beat alignment with enhanced format
syllable_guidance += "\nEXAMPLES OF PERFECT RHYTHM ALIGNMENT:\n"
syllable_guidance += "Pattern: S(0.95):1 → w(0.4):1 → m(0.7):1 → w(0.3):1\n"
syllable_guidance += "Lyric: 'HEAR the MU-sic PLAY'\n"
syllable_guidance += " ↑ ↑ ↑ ↑\n"
syllable_guidance += " S w m w <- BEAT TYPE\n\n"
syllable_guidance += "Pattern: S(0.9):2 → w(0.3):1 → S(0.85):1 → w(0.4):2\n"
syllable_guidance += "Lyric: 'DANC-ing TO the RHYTHM of LOVE'\n"
syllable_guidance += " ↑ ↑ ↑ ↑ ↑ ↑\n"
syllable_guidance += " S S w S w w <- BEAT TYPE\n\n"
syllable_guidance += "Pattern: S(0.92):1 → m(0.65):2 → S(0.88):1 → w(0.35):1\n"
syllable_guidance += "Lyric: 'TIME keeps FLOW-ing ON and ON'\n"
syllable_guidance += " ↑ ↑ ↑ ↑ ↑ ↑\n"
syllable_guidance += " S m m S w w <- BEAT TYPE\n\n"
# Add genre-specific guidance based on the detected genre
genre_guidance = ""
if any(term in genre.lower() for term in ["rap", "hip-hop", "hip hop"]):
genre_guidance += "\nSPECIFIC GUIDANCE FOR RAP/HIP-HOP RHYTHMS:\n"
genre_guidance += "- Use more syllables per beat for rapid-fire sections\n"
genre_guidance += "- Create internal rhymes within lines, not just at line endings\n"
genre_guidance += "- Emphasize the first beat of each bar with strong consonants\n"
elif any(term in genre.lower() for term in ["electronic", "edm", "techno", "house", "dance"]):
genre_guidance += "\nSPECIFIC GUIDANCE FOR ELECTRONIC MUSIC RHYTHMS:\n"
genre_guidance += "- Use repetitive phrases that build and release tension\n"
genre_guidance += "- Match syllables precisely to the beat grid\n"
genre_guidance += "- Use short, percussive words on strong beats\n"
elif any(term in genre.lower() for term in ["rock", "metal", "punk", "alternative"]):
genre_guidance += "\nSPECIFIC GUIDANCE FOR ROCK RHYTHMS:\n"
genre_guidance += "- Use powerful, emotive words on downbeats\n"
genre_guidance += "- Create contrast between verse and chorus energy levels\n"
genre_guidance += "- Emphasize hooks with simple, memorable phrases\n"
elif any(term in genre.lower() for term in ["folk", "country", "acoustic", "ballad"]):
genre_guidance += "\nSPECIFIC GUIDANCE FOR FOLK/ACOUSTIC RHYTHMS:\n"
genre_guidance += "- Focus on storytelling with clear narrative flow\n"
genre_guidance += "- Use natural speech patterns that flow conversationally\n"
genre_guidance += "- Place important words at the start of phrases\n"
# Add genre guidance to the main guidance
syllable_guidance += genre_guidance
# Store the syllable guidance for later use
syllable_guidance_text = syllable_guidance
# Determine if we should use traditional sections or not based on structure
if song_structure and "flexible_structure" in song_structure and song_structure["flexible_structure"]:
# If we have more than 4 segments, it's likely not a traditional song structure
if "segments" in song_structure["flexible_structure"]:
segments = song_structure["flexible_structure"]["segments"]
if len(segments) > 4:
use_sections = False
# Create enhanced prompt with better rhythm alignment instructions
if use_sections:
# Traditional approach with sections
content = f"""
You are a talented songwriter who specializes in {genre} music.
Write original {genre} song lyrics for a song that is {duration:.1f} seconds long.
Music analysis has detected the following qualities in the music:
- Tempo: {tempo:.1f} BPM
- Key: {key} {mode}
- Primary emotion: {primary_emotion}
- Primary theme: {primary_theme}
{syllable_guidance}
CRITICAL PRINCIPLES FOR RHYTHMIC ALIGNMENT:
1. STRESSED syllables MUST fall on STRONG beats (marked with STRONG in the pattern)
2. Natural word stress patterns must match the beat strength (strong words on strong beats)
3. Line breaks should occur at phrase endings for natural breathing
4. Consonant clusters should be avoided on fast notes and strong beats
5. Open vowels (a, e, o) work better for sustained notes and syllables
6. Pay attention to strength values in the pattern (higher values like 0.95 need stronger emphasis)
7. For half-syllable positions (like S1.5 or m2.5), use short, quick syllables or words with weak vowels
Think step by step about how to match words to the rhythm pattern:
1. First, identify the strong beats in each line pattern
2. Choose words where stressed syllables naturally fall on strong beats
3. Count syllables carefully to ensure they match the pattern precisely
4. Test your line against the pattern by mapping each syllable
IMPORTANT: Each line of lyrics must match exactly to ONE musical phrase/segment.
The lyrics should:
- Perfectly capture the essence and style of {genre} music
- Express the {primary_emotion} emotion and {primary_theme} theme
- Follow the structure patterns provided above
- Be completely original
- Match the song duration of {duration:.1f} seconds
IMPORTANT: Your generated lyrics must be followed by a section titled "[RHYTHM_ANALYSIS_SECTION]"
where you analyze how well the lyrics align with the musical rhythm. This section MUST appear
even if there are no rhythm issues. Include the following in your analysis:
1. Syllable counts for each line and how they match the rhythm pattern
2. Where stressed syllables align with strong beats
3. Any potential misalignments or improvements
Your lyrics:
"""
else:
# Flexible approach without traditional sections
content = f"""
You are a talented songwriter who specializes in {genre} music.
Write original lyrics that match the rhythm of a {genre} music segment that is {duration:.1f} seconds long.
Music analysis has detected the following qualities:
- Tempo: {tempo:.1f} BPM
- Key: {key} {mode}
- Primary emotion: {primary_emotion}
- Primary theme: {primary_theme}
{syllable_guidance}
CRITICAL PRINCIPLES FOR RHYTHMIC ALIGNMENT:
1. STRESSED syllables MUST fall on STRONG beats (marked with STRONG in the pattern)
2. Natural word stress patterns must match the beat strength (strong words on strong beats)
3. Line breaks should occur at phrase endings for natural breathing
4. Consonant clusters should be avoided on fast notes and strong beats
5. Open vowels (a, e, o) work better for sustained notes and syllables
6. Pay attention to strength values in the pattern (higher values like 0.95 need stronger emphasis)
7. For half-syllable positions (like S1.5 or m2.5), use short, quick syllables or words with weak vowels
Think step by step about how to match words to the rhythm pattern:
1. First, identify the strong beats in each line pattern
2. Choose words where stressed syllables naturally fall on strong beats
3. Count syllables carefully to ensure they match the pattern precisely
4. Test your line against the pattern by mapping each syllable
CRITICAL: Each line of lyrics must match exactly to ONE musical phrase/segment.
For perfect alignment examples:
- "FEEL the RHY-thm in your SOUL" – stressed syllables on strong beats
- "to-DAY we DANCE a-LONG" – natural speech stress matches musical stress
- "WAIT-ing FOR the SUN to RISE" – syllable emphasis aligns with beat emphasis
The lyrics should:
- Perfectly capture the essence and style of {genre} music
- Express the {primary_emotion} emotion and {primary_theme} theme
- Be completely original
- Maintain a consistent theme throughout
- Match the audio segment duration of {duration:.1f} seconds
Include any section labels like [Verse] or [Chorus] as indicated in the rhythm patterns above.
Each line of lyrics must follow the corresponding segment's rhythm pattern EXACTLY.
IMPORTANT: Your generated lyrics must be followed by a section titled "[RHYTHM_ANALYSIS_SECTION]"
where you analyze how well the lyrics align with the musical rhythm. This section MUST appear
even if there are no rhythm issues. Include the following in your analysis:
1. Syllable counts for each line and how they match the rhythm pattern
2. Where stressed syllables align with strong beats
3. Any potential misalignments or improvements
Your lyrics:
"""
# Format as a chat message for the LLM
messages = [
{"role": "user", "content": content}
]
# Apply standard chat template without thinking enabled
text = llm_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Generate lyrics using the LLM
model_inputs = llm_tokenizer([text], return_tensors="pt").to(llm_model.device)
# Configure generation parameters based on model capability
generation_params = {
"do_sample": True,
"temperature": 0.6, # Lower for more consistent rhythm alignment
"top_p": 0.95,
"top_k": 50, # Increased from 20 for more diversity
"repetition_penalty": 1.2,
"max_new_tokens": 2048 # Doubled from 1024 for more comprehensive lyrics
}
# Generate output
generated_ids = llm_model.generate(
**model_inputs,
**generation_params
)
# Extract output tokens
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# Skip the thinking process completely and just get the raw output
lyrics = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
# If we find <thinking> tags, extract only the content after </thinking>
if "<thinking>" in lyrics and "</thinking>" in lyrics:
lyrics = lyrics.split("</thinking>")[1].strip()
# Remove any other thinking indicators that might be present
thinking_markers = ["<think>", "</think>", "[thinking]", "[/thinking]", "I'll think step by step:"]
for marker in thinking_markers:
if marker in lyrics:
parts = lyrics.split(marker)
if len(parts) > 1:
lyrics = parts[-1].strip() # Take the last part after any thinking marker
# Verify syllable counts with enhanced verification
if templates_for_verification:
verified_lyrics = verify_flexible_syllable_counts(lyrics, templates_for_verification)
# Check if significant issues were detected
if "[Note: Potential rhythm mismatches" in verified_lyrics and "Detailed Alignment Analysis" in verified_lyrics:
# Extract the original lyrics (before the notes section)
original_lyrics = lyrics.split("[Note:")[0].strip()
# Extract the analysis
analysis = verified_lyrics.split("[Note:")[1]
# If we have serious alignment issues, consider a refinement step
if "stress misalignments" in analysis and len(templates_for_verification) > 0:
# Add a refinement prompt with the specific analysis
refinement_prompt = f"""
You need to fix rhythm issues in these lyrics. Here's the analysis of the problems:
{analysis}
Revise the lyrics to perfectly match the rhythm pattern while maintaining the theme.
Focus on fixing the stress misalignments by placing stressed syllables on STRONG beats.
Original lyrics:
{original_lyrics}
Improved lyrics with fixed rhythm:
"""
# Format as a chat message for refinement
refinement_messages = [
{"role": "user", "content": refinement_prompt}
]
# Use standard template for refinement (no thinking mode needed)
refinement_text = llm_tokenizer.apply_chat_template(
refinement_messages,
tokenize=False,
add_generation_prompt=True
)
try:
# Generate refined lyrics with more focus on rhythm alignment
refinement_inputs = llm_tokenizer([refinement_text], return_tensors="pt").to(llm_model.device)
# Use stricter parameters for refinement
refinement_params = {
"do_sample": True,
"temperature": 0.4, # Lower temperature for more precise refinement
"top_p": 0.9,
"repetition_penalty": 1.3,
"max_new_tokens": 1024
}
refined_ids = llm_model.generate(
**refinement_inputs,
**refinement_params
)
# Extract refined lyrics
refined_output_ids = refined_ids[0][len(refinement_inputs.input_ids[0]):].tolist()
refined_lyrics = llm_tokenizer.decode(refined_output_ids, skip_special_tokens=True).strip()
# Verify the refined lyrics
refined_verified_lyrics = verify_flexible_syllable_counts(refined_lyrics, templates_for_verification)
# Only use refined lyrics if they're better (fewer notes)
if "[Note: Potential rhythm mismatches" not in refined_verified_lyrics:
lyrics = refined_lyrics
elif refined_verified_lyrics.count("misalignments") < verified_lyrics.count("misalignments"):
lyrics = refined_verified_lyrics
else:
lyrics = verified_lyrics
except Exception as e:
print(f"Error in lyrics refinement: {str(e)}")
lyrics = verified_lyrics
else:
# Minor issues, just use the verification notes
lyrics = verified_lyrics
else:
# No significant issues detected
lyrics = verified_lyrics
# Check if we have the [RHYTHM_ANALYSIS_SECTION] tag
if "[RHYTHM_ANALYSIS_SECTION]" in lyrics:
# Split at our custom marker
parts = lyrics.split("[RHYTHM_ANALYSIS_SECTION]")
clean_lyrics = parts[0].strip()
rhythm_analysis = parts[1].strip()
# Add our standard marker for compatibility with existing code
lyrics = clean_lyrics + "\n\n[Note: Rhythm Analysis]\n" + rhythm_analysis
# For backwards compatibility - if we have the old format, still handle it
elif "[Note: Potential rhythm mismatches" in lyrics:
# Keep it as is, the existing parsing code can handle this format
pass
else:
# No analysis found, add a minimal one
lyrics = lyrics + "\n\n[Note: Rhythm Analysis]\nNo rhythm issues detected. All syllables align well with the beat pattern."
# Before returning, add syllable analysis and prompt template
if isinstance(lyrics, str):
# Extract clean lyrics and analysis
if "[Note: Rhythm Analysis]" in lyrics:
clean_lyrics = lyrics.split("[Note: Rhythm Analysis]")[0].strip()
rhythm_analysis = lyrics.split("[Note: Rhythm Analysis]")[1]
elif "[Note: Potential rhythm mismatches" in lyrics:
clean_lyrics = lyrics.split("[Note:")[0].strip()
rhythm_analysis = "[Note:" + lyrics.split("[Note:")[1]
else:
clean_lyrics = lyrics
rhythm_analysis = "No rhythm analysis available"
# Create syllable analysis
syllable_analysis = "=== SYLLABLE ANALYSIS ===\n\n"
if templates_for_verification:
syllable_analysis += "Template Analysis:\n"
for i, template in enumerate(templates_for_verification):
if i < min(len(templates_for_verification), 30): # Limit to 30 to avoid overwhelming output
syllable_analysis += f"Line {i+1}:\n"
if isinstance(template, dict):
if "syllable_template" in template:
syllable_analysis += f" Template: {template['syllable_template']}\n"
if "syllable_count" in template:
syllable_analysis += f" Expected syllables: {template['syllable_count']}\n"
elif isinstance(template, str):
syllable_analysis += f" Template: {template}\n"
syllable_analysis += "\n"
if len(templates_for_verification) > 30:
syllable_analysis += f"... and {len(templates_for_verification) - 30} more lines\n\n"
# Add structure visualization to syllable analysis
syllable_analysis += "\n" + structure_visualization
# Create prompt template
prompt_template = "=== PROMPT TEMPLATE ===\n\n"
prompt_template += "Genre: " + genre + "\n"
prompt_template += f"Duration: {duration:.1f} seconds\n"
prompt_template += f"Tempo: {tempo:.1f} BPM\n"
prompt_template += f"Key: {key} {mode}\n"
prompt_template += f"Primary Emotion: {primary_emotion}\n"
prompt_template += f"Primary Theme: {primary_theme}\n\n"
prompt_template += "Syllable Guidance:\n" + syllable_guidance_text
# Return all components
return {
"lyrics": clean_lyrics,
"rhythm_analysis": rhythm_analysis,
"syllable_analysis": syllable_analysis,
"prompt_template": prompt_template
}
return lyrics
def process_audio(audio_file):
"""Main function to process audio file, classify genre, and generate lyrics with enhanced rhythm analysis."""
if audio_file is None:
return "Please upload an audio file.", None, None
try:
print("Step 1/5: Extracting audio features...")
# Extract audio features
audio_data = extract_audio_features(audio_file)
print("Step 2/5: Verifying audio contains music...")
# First check if it's music
try:
is_music, ast_results = detect_music(audio_data)
except Exception as e:
print(f"Error in music detection: {str(e)}")
return f"Error in music detection: {str(e)}", None, ast_results
if not is_music:
return "The uploaded audio does not appear to be music. Please upload a music file.", None, ast_results
print("Step 3/5: Classifying music genre...")
# Classify genre
try:
top_genres = classify_genre(audio_data)
# Format genre results using utility function
genre_results = format_genre_results(top_genres)
except Exception as e:
print(f"Error in genre classification: {str(e)}")
return f"Error in genre classification: {str(e)}", None, ast_results
print("Step 4/5: Analyzing music emotions, themes, and structure...")
# Analyze music emotions and themes
try:
emotion_results = music_analyzer.analyze_music(audio_file)
except Exception as e:
print(f"Error in emotion analysis: {str(e)}")
# Continue even if emotion analysis fails
emotion_results = {
"emotion_analysis": {"primary_emotion": "Unknown"},
"theme_analysis": {"primary_theme": "Unknown"},
"rhythm_analysis": {"tempo": 0},
"tonal_analysis": {"key": "Unknown", "mode": ""},
"summary": {"tempo": 0, "key": "Unknown", "mode": "", "primary_emotion": "Unknown", "primary_theme": "Unknown"}
}
# Calculate detailed song structure for better lyrics alignment
try:
# Enhanced song structure calculation for precise lyrics matching
y, sr = load_audio(audio_file, SAMPLE_RATE)
# Analyze beats and phrases for music-aligned lyrics
beats_info = detect_beats(y, sr)
sections_info = detect_sections(y, sr)
# Create structured segments for precise line-by-line matching
segments = []
# Try to break audio into meaningful segments based on sections
# Each segment will correspond to one line of lyrics
if sections_info and len(sections_info) > 1:
min_segment_duration = 1.5 # Minimum 1.5 seconds per segment
for section in sections_info:
section_start = section["start"]
section_end = section["end"]
section_duration = section["duration"]
# For very short sections, add as a single segment
if section_duration < min_segment_duration * 1.5:
segments.append({
"start": section_start,
"end": section_end
})
else:
# Calculate ideal number of segments for this section
# based on its duration - aiming for 2-4 second segments
ideal_segment_duration = 3.0 # Target 3 seconds per segment
segment_count = max(1, int(section_duration / ideal_segment_duration))
# Create evenly-spaced segments within this section
segment_duration = section_duration / segment_count
for i in range(segment_count):
segment_start = section_start + i * segment_duration
segment_end = segment_start + segment_duration
segments.append({
"start": segment_start,
"end": segment_end
})
# If no good sections found, create segments based on beats
elif beats_info and len(beats_info["beat_times"]) > 4:
beats = beats_info["beat_times"]
time_signature = beats_info.get("time_signature", 4)
# Target one segment per musical measure (typically 4 beats)
measure_size = time_signature
for i in range(0, len(beats), measure_size):
if i + 1 < len(beats): # Need at least 2 beats for a meaningful segment
measure_start = beats[i]
# If we have enough beats for the full measure
if i + measure_size < len(beats):
measure_end = beats[i + measure_size]
else:
# Use available beats and extrapolate for the last measure
if i > 0:
beat_interval = beats[i] - beats[i-1]
measure_end = beats[-1] + (beat_interval * (measure_size - (len(beats) - i)))
else:
measure_end = audio_data["duration"]
segments.append({
"start": measure_start,
"end": measure_end
})
# Last resort: simple time-based segments
else:
# Create segments of approximately 3 seconds each
segment_duration = 3.0
total_segments = max(4, int(audio_data["duration"] / segment_duration))
segment_duration = audio_data["duration"] / total_segments
for i in range(total_segments):
segment_start = i * segment_duration
segment_end = segment_start + segment_duration
segments.append({
"start": segment_start,
"end": segment_end
})
# Create a flexible structure with the segments
flexible_structure = {
"beats": beats_info,
"segments": segments
}
# Add to song structure
song_structure = {
"beats": beats_info,
"sections": sections_info,
"flexible_structure": flexible_structure
}
# Add syllable counts to each section
song_structure["syllables"] = []
for section in sections_info:
# Create syllable templates for sections
section_beats_info = {
"beat_times": [beat for beat in beats_info["beat_times"]
if section["start"] <= beat < section["end"]],
"tempo": beats_info.get("tempo", 120)
}
if "beat_strengths" in beats_info:
section_beats_info["beat_strengths"] = [
strength for i, strength in enumerate(beats_info["beat_strengths"])
if i < len(beats_info["beat_times"]) and
section["start"] <= beats_info["beat_times"][i] < section["end"]
]
# Get a syllable count based on section duration and tempo
syllable_count = int(section["duration"] * (beats_info.get("tempo", 120) / 60) * 1.5)
section_info = {
"type": section["type"],
"start": section["start"],
"end": section["end"],
"duration": section["duration"],
"syllable_count": syllable_count,
"beat_count": len(section_beats_info["beat_times"])
}
# Try to create a more detailed syllable template
if len(section_beats_info["beat_times"]) >= 2:
section_info["syllable_template"] = create_flexible_syllable_templates(
section_beats_info,
genre=top_genres[0][0]
)
song_structure["syllables"].append(section_info)
print(f"Successfully analyzed song structure with {len(segments)} segments")
except Exception as e:
print(f"Error analyzing song structure: {str(e)}")
# Continue with a simpler approach if this fails
song_structure = None
print("Step 5/5: Generating rhythmically aligned lyrics...")
# Generate lyrics based on top genre, emotion analysis, and song structure
try:
primary_genre, _ = top_genres[0]
lyrics_result = generate_lyrics(primary_genre, audio_data["duration"], emotion_results, song_structure)
# Handle both old and new return formats
if isinstance(lyrics_result, dict):
lyrics = lyrics_result["lyrics"]
rhythm_analysis = lyrics_result["rhythm_analysis"]
syllable_analysis = lyrics_result["syllable_analysis"]
prompt_template = lyrics_result["prompt_template"]
else:
lyrics = lyrics_result
rhythm_analysis = "No detailed rhythm analysis available"
syllable_analysis = "No syllable analysis available"
prompt_template = "No prompt template available"
except Exception as e:
print(f"Error generating lyrics: {str(e)}")
lyrics = f"Error generating lyrics: {str(e)}"
rhythm_analysis = "No rhythm analysis available"
syllable_analysis = "No syllable analysis available"
prompt_template = "No prompt template available"
# Prepare results dictionary with additional rhythm analysis
results = {
"genre_results": genre_results,
"lyrics": lyrics,
"rhythm_analysis": rhythm_analysis,
"syllable_analysis": syllable_analysis,
"prompt_template": prompt_template,
"ast_results": ast_results
}
return results
except Exception as e:
error_msg = f"Error processing audio: {str(e)}"
print(error_msg)
return error_msg, None, []
# Create enhanced Gradio interface with tabs for better organization
with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo:
gr.Markdown("# Music Genre Classifier & Lyrics Generator")
gr.Markdown("Upload a music file to classify its genre, analyze its emotions, and generate perfectly aligned lyrics.")
with gr.Row():
with gr.Column(scale=1):
audio_input = gr.Audio(label="Upload Music", type="filepath")
submit_btn = gr.Button("Analyze & Generate", variant="primary")
# Add genre info box
with gr.Accordion("About Music Genres", open=False):
gr.Markdown("""
The system recognizes various music genres including:
- Pop, Rock, Hip-Hop, R&B
- Electronic, Dance, Techno, House
- Jazz, Blues, Classical
- Folk, Country, Acoustic
- Metal, Punk, Alternative
- And many others!
For best results, use high-quality audio files (MP3, WAV, FLAC) with at least 10 seconds of music.
""")
with gr.Column(scale=2):
# Use tabs for better organization of outputs
with gr.Tabs():
with gr.TabItem("Analysis Results"):
genre_output = gr.Textbox(label="Detected Genres", lines=4)
# Create 2 columns for emotion and audio classification
with gr.Row():
with gr.Column():
emotion_output = gr.Textbox(label="Emotion & Structure Analysis", lines=8)
with gr.Column():
ast_output = gr.Textbox(label="Audio Classification", lines=8)
with gr.TabItem("Generated Lyrics"):
lyrics_output = gr.Textbox(label="Lyrics", lines=18)
with gr.TabItem("Rhythm Analysis"):
rhythm_analysis_output = gr.Textbox(label="Syllable-Beat Alignment Analysis", lines=16)
with gr.TabItem("Syllable Analysis"):
syllable_analysis_output = gr.Textbox(label="Detailed Syllable Analysis", lines=16)
prompt_template_output = gr.Textbox(label="Prompt Template", lines=16)
# Processing function with better handling of results
def display_results(audio_file):
if audio_file is None:
return "Please upload an audio file.", "No emotion analysis available.", "No audio classification available.", "No lyrics generated.", "No rhythm analysis available.", "No syllable analysis available.", "No prompt template available."
try:
# Process audio and get results
results = process_audio(audio_file)
# Check if we got an error message instead of results
if isinstance(results, str) and "Error" in results:
return results, "Error in analysis", "Error in classification", "No lyrics generated", "No rhythm analysis available", "No syllable analysis available", "No prompt template available"
elif isinstance(results, tuple) and isinstance(results[0], str) and "Error" in results[0]:
return results[0], "Error in analysis", "Error in classification", "No lyrics generated", "No rhythm analysis available", "No syllable analysis available", "No prompt template available"
# For backwards compatibility, handle both dictionary and tuple returns
if isinstance(results, dict):
genre_results = results.get("genre_results", "Genre classification failed")
lyrics = results.get("lyrics", "Lyrics generation failed")
ast_results = results.get("ast_results", [])
# Use clean lyrics if available
clean_lyrics = results.get("clean_lyrics", lyrics)
rhythm_analysis = results.get("rhythm_analysis", "No detailed rhythm analysis available")
# Extract syllable analysis and prompt template
syllable_analysis = results.get("syllable_analysis", "No syllable analysis available")
prompt_template = results.get("prompt_template", "No prompt template available")
else:
# Handle the old tuple return format
genre_results, lyrics, ast_results = results
clean_lyrics = lyrics
# Extract rhythm analysis if present
rhythm_analysis = "No detailed rhythm analysis available"
if isinstance(lyrics, str):
# First check for new format
if "[Note: Rhythm Analysis]" in lyrics:
clean_lyrics = lyrics.split("[Note: Rhythm Analysis]")[0].strip()
rhythm_analysis = lyrics.split("[Note: Rhythm Analysis]")[1]
# Check for old format
elif "[Note: Potential rhythm mismatches" in lyrics:
clean_lyrics = lyrics.split("[Note:")[0].strip()
rhythm_analysis = "[Note:" + lyrics.split("[Note:")[1]
# Default values for new fields
syllable_analysis = "No syllable analysis available"
prompt_template = "No prompt template available"
# Format emotion analysis results
try:
emotion_results = music_analyzer.analyze_music(audio_file)
emotion_text = f"Tempo: {emotion_results['summary']['tempo']:.1f} BPM\n"
emotion_text += f"Key: {emotion_results['summary']['key']} {emotion_results['summary']['mode']}\n"
emotion_text += f"Primary Emotion: {emotion_results['summary']['primary_emotion']}\n"
emotion_text += f"Primary Theme: {emotion_results['summary']['primary_theme']}"
# Add detailed song structure information if available
try:
audio_data = extract_audio_features(audio_file)
song_structure = calculate_detailed_song_structure(audio_data)
emotion_text += "\n\nSong Structure:\n"
for section in song_structure["syllables"]:
emotion_text += f"- {section['type'].capitalize()}: {section['start']:.1f}s to {section['end']:.1f}s "
emotion_text += f"({section['duration']:.1f}s, {section['beat_count']} beats, "
if "syllable_template" in section:
emotion_text += f"template: {section['syllable_template']})\n"
else:
emotion_text += f"~{section['syllable_count']} syllables)\n"
# Add flexible structure info if available
if "flexible_structure" in song_structure and song_structure["flexible_structure"]:
flexible = song_structure["flexible_structure"]
if "segments" in flexible and flexible["segments"]:
emotion_text += "\nDetailed Rhythm Analysis:\n"
for i, segment in enumerate(flexible["segments"][:5]): # Show first 5 segments
emotion_text += f"- Segment {i+1}: {segment['start']:.1f}s to {segment['end']:.1f}s, "
emotion_text += f"pattern: {segment.get('syllable_template', 'N/A')}\n"
if len(flexible["segments"]) > 5:
emotion_text += f" (+ {len(flexible['segments']) - 5} more segments)\n"
except Exception as e:
print(f"Error displaying song structure: {str(e)}")
# Continue without showing structure details
except Exception as e:
print(f"Error in emotion analysis: {str(e)}")
emotion_text = f"Error in emotion analysis: {str(e)}"
# Format AST classification results
if ast_results and isinstance(ast_results, list):
ast_text = "Audio Classification Results:\n"
for result in ast_results[:5]: # Show top 5 results
ast_text += f"{result['label']}: {result['score']*100:.2f}%\n"
else:
ast_text = "No valid audio classification results available."
# Return all results including new fields
return genre_results, emotion_text, ast_text, clean_lyrics, rhythm_analysis, syllable_analysis, prompt_template
except Exception as e:
error_msg = f"Error: {str(e)}"
print(error_msg)
return error_msg, "Error in emotion analysis", "Error in audio classification", "No lyrics generated", "No rhythm analysis available", "No syllable analysis available", "No prompt template available"
# Connect the button to the display function with updated outputs
submit_btn.click(
fn=display_results,
inputs=[audio_input],
outputs=[genre_output, emotion_output, ast_output, lyrics_output, rhythm_analysis_output, syllable_analysis_output, prompt_template_output]
)
# Enhanced explanation of how the system works
with gr.Accordion("How it works", open=False):
gr.Markdown("""
## Advanced Lyrics Generation Process
1. **Audio Analysis**: The system analyzes your uploaded music file using multiple machine learning models.
2. **Genre Classification**: A specialized neural network identifies the musical genre, detecting subtle patterns in the audio.
3. **Emotional Analysis**: The system examines harmonic, rhythmic, and timbral features to determine the emotional qualities of the music.
4. **Rhythm Mapping**: Advanced beat detection algorithms create a detailed rhythmic map of the music, identifying:
- Strong and weak beats
- Natural phrase boundaries
- Time signature and tempo variations
5. **Syllable Template Creation**: For each musical phrase, the system generates precise syllable templates that reflect:
- Beat stress patterns (strong, medium, weak)
- Appropriate syllable counts based on tempo
- Genre-specific rhythmic qualities
6. **Lyrics Generation**: Using the detected genre, emotion, and rhythm patterns, a large language model generates lyrics that:
- Match the emotional quality of the music
- Follow the precise syllable templates
- Align stressed syllables with strong beats
- Maintain genre-appropriate style and themes
7. **Rhythm Verification**: The system verifies the generated lyrics, analyzing:
- Syllable count accuracy
- Stress alignment with strong beats
- Word stress patterns
8. **Refinement**: If significant rhythm mismatches are detected, the system can automatically refine the lyrics for better alignment.
This multi-step process creates lyrics that feel naturally connected to the music, as if they were written specifically for it.
""")
# Launch the app
demo.launch() |