root
commited on
Commit
·
4ddd8f4
1
Parent(s):
db4c558
syllables trying first
Browse files- app.py +509 -52
- requirements.txt +2 -1
- utils.py +43 -29
app.py
CHANGED
@@ -3,6 +3,8 @@ import io
|
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
import numpy as np
|
|
|
|
|
6 |
from transformers import (
|
7 |
AutoModelForAudioClassification,
|
8 |
AutoFeatureExtractor,
|
@@ -103,6 +105,41 @@ llm_pipeline = pipeline(
|
|
103 |
# Initialize music emotion analyzer
|
104 |
music_analyzer = MusicAnalyzer()
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
def extract_audio_features(audio_file):
|
107 |
"""Extract audio features from an audio file."""
|
108 |
try:
|
@@ -228,19 +265,83 @@ def detect_music(audio_data):
|
|
228 |
print(f"Error in music detection: {str(e)}")
|
229 |
return False, []
|
230 |
|
|
|
231 |
def detect_beats(y, sr):
|
232 |
-
"""Detect beats
|
233 |
# Get tempo and beat frames
|
234 |
tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)
|
235 |
|
236 |
# Convert beat frames to time in seconds
|
237 |
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
|
238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
return {
|
240 |
"tempo": tempo,
|
241 |
"beat_frames": beat_frames,
|
242 |
"beat_times": beat_times,
|
243 |
-
"beat_count": len(beat_times)
|
|
|
|
|
|
|
|
|
244 |
}
|
245 |
|
246 |
def detect_sections(y, sr):
|
@@ -300,6 +401,124 @@ def detect_sections(y, sr):
|
|
300 |
|
301 |
return sections
|
302 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
def estimate_syllables_per_section(beats_info, sections):
|
304 |
"""Estimate the number of syllables needed for each section based on beats."""
|
305 |
syllables_per_section = []
|
@@ -314,17 +533,31 @@ def estimate_syllables_per_section(beats_info, sections):
|
|
314 |
# Calculate syllables based on section type and beat count
|
315 |
beat_count = len(section_beats)
|
316 |
|
317 |
-
#
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
|
329 |
syllables_per_section.append({
|
330 |
"type": section["type"],
|
@@ -332,7 +565,8 @@ def estimate_syllables_per_section(beats_info, sections):
|
|
332 |
"end": section["end"],
|
333 |
"duration": section["duration"],
|
334 |
"beat_count": beat_count,
|
335 |
-
"syllable_count":
|
|
|
336 |
})
|
337 |
|
338 |
return syllables_per_section
|
@@ -342,40 +576,71 @@ def calculate_detailed_song_structure(audio_data):
|
|
342 |
y = audio_data["waveform"]
|
343 |
sr = audio_data["sample_rate"]
|
344 |
|
345 |
-
#
|
346 |
beats_info = detect_beats(y, sr)
|
347 |
|
348 |
# Detect sections
|
349 |
sections = detect_sections(y, sr)
|
350 |
|
351 |
-
#
|
352 |
syllables_info = estimate_syllables_per_section(beats_info, sections)
|
353 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
return {
|
355 |
"beats": beats_info,
|
356 |
"sections": sections,
|
357 |
-
"syllables": syllables_info
|
|
|
358 |
}
|
359 |
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
# Calculate approximate number of verses and chorus
|
366 |
-
if lines_count <= 6:
|
367 |
-
# Very short song - one verse and chorus
|
368 |
-
verse_lines = 2
|
369 |
-
chorus_lines = 2
|
370 |
-
elif lines_count <= 10:
|
371 |
-
# Medium song - two verses and chorus
|
372 |
-
verse_lines = 3
|
373 |
-
chorus_lines = 2
|
374 |
-
else:
|
375 |
-
# Longer song - two verses, chorus, and bridge
|
376 |
-
verse_lines = 3
|
377 |
-
chorus_lines = 2
|
378 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
379 |
# Extract emotion and theme data from analysis results
|
380 |
primary_emotion = emotion_results["emotion_analysis"]["primary_emotion"]
|
381 |
primary_theme = emotion_results["theme_analysis"]["primary_theme"]
|
@@ -389,8 +654,129 @@ def generate_lyrics(genre, duration, emotion_results):
|
|
389 |
key = emotion_results["tonal_analysis"]["key"]
|
390 |
mode = emotion_results["tonal_analysis"]["mode"]
|
391 |
|
392 |
-
#
|
393 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
You are a talented songwriter who specializes in {genre} music.
|
395 |
Write original {genre} song lyrics for a song that is {duration:.1f} seconds long.
|
396 |
|
@@ -400,18 +786,58 @@ Music analysis has detected the following qualities in the music:
|
|
400 |
- Primary emotion: {primary_emotion}
|
401 |
- Primary theme: {primary_theme}
|
402 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
The lyrics should:
|
404 |
- Perfectly capture the essence and style of {genre} music
|
405 |
- Express the {primary_emotion} emotion and {primary_theme} theme
|
406 |
-
- Be approximately {
|
407 |
-
- Have a coherent theme and flow
|
408 |
- Follow this structure:
|
409 |
* Verse: {verse_lines} lines
|
410 |
* Chorus: {chorus_lines} lines
|
411 |
-
* {f'Bridge:
|
412 |
- Be completely original
|
413 |
- Match the song duration of {duration:.1f} seconds
|
414 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
|
416 |
Your lyrics:
|
417 |
"""
|
@@ -429,19 +855,31 @@ Your lyrics:
|
|
429 |
# Extract and clean generated lyrics
|
430 |
lyrics = response[0]["generated_text"].strip()
|
431 |
|
432 |
-
#
|
433 |
-
if
|
|
|
|
|
|
|
|
|
434 |
lines = lyrics.split('\n')
|
435 |
formatted_lyrics = []
|
436 |
-
|
|
|
437 |
for i, line in enumerate(lines):
|
438 |
-
if
|
|
|
|
|
|
|
|
|
439 |
formatted_lyrics.append("[Verse]")
|
440 |
-
elif
|
441 |
formatted_lyrics.append("\n[Chorus]")
|
442 |
-
elif
|
443 |
formatted_lyrics.append("\n[Bridge]")
|
|
|
444 |
formatted_lyrics.append(line)
|
|
|
|
|
445 |
lyrics = '\n'.join(formatted_lyrics)
|
446 |
|
447 |
return lyrics
|
@@ -496,10 +934,10 @@ def process_audio(audio_file):
|
|
496 |
# Continue with a simpler approach if this fails
|
497 |
song_structure = None
|
498 |
|
499 |
-
# Generate lyrics based on top genre and
|
500 |
try:
|
501 |
primary_genre, _ = top_genres[0]
|
502 |
-
lyrics = generate_lyrics(primary_genre, audio_data["duration"], emotion_results)
|
503 |
except Exception as e:
|
504 |
print(f"Error generating lyrics: {str(e)}")
|
505 |
lyrics = f"Error generating lyrics: {str(e)}"
|
@@ -555,7 +993,25 @@ with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo:
|
|
555 |
emotion_text += "\n\nSong Structure:\n"
|
556 |
for section in song_structure["syllables"]:
|
557 |
emotion_text += f"- {section['type'].capitalize()}: {section['start']:.1f}s to {section['end']:.1f}s "
|
558 |
-
emotion_text += f"({section['duration']:.1f}s, {section['beat_count']} beats,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
559 |
except Exception as e:
|
560 |
print(f"Error displaying song structure: {str(e)}")
|
561 |
# Continue without showing structure details
|
@@ -590,8 +1046,9 @@ with gr.Blocks(title="Music Genre Classifier & Lyrics Generator") as demo:
|
|
590 |
2. The system will classify the genre using the dima806/music_genres_classification model
|
591 |
3. The system will analyze the musical emotion and theme using advanced audio processing
|
592 |
4. The system will identify the song structure, beats, and timing patterns
|
593 |
-
5.
|
594 |
-
6.
|
|
|
595 |
""")
|
596 |
|
597 |
# Launch the app
|
|
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
+
import re
|
7 |
+
import pronouncing # Add this to requirements.txt for syllable counting
|
8 |
from transformers import (
|
9 |
AutoModelForAudioClassification,
|
10 |
AutoFeatureExtractor,
|
|
|
105 |
# Initialize music emotion analyzer
|
106 |
music_analyzer = MusicAnalyzer()
|
107 |
|
108 |
+
# New function: Count syllables in text
|
109 |
+
def count_syllables(text):
|
110 |
+
"""Count syllables in a given text using the pronouncing library."""
|
111 |
+
words = re.findall(r'\b[a-zA-Z]+\b', text.lower())
|
112 |
+
syllable_count = 0
|
113 |
+
|
114 |
+
for word in words:
|
115 |
+
# Get pronunciations for the word
|
116 |
+
pronunciations = pronouncing.phones_for_word(word)
|
117 |
+
if pronunciations:
|
118 |
+
# Count syllables in the first pronunciation
|
119 |
+
syllable_count += pronouncing.syllable_count(pronunciations[0])
|
120 |
+
else:
|
121 |
+
# Fallback: estimate syllables based on vowel groups
|
122 |
+
vowels = "aeiouy"
|
123 |
+
count = 0
|
124 |
+
prev_is_vowel = False
|
125 |
+
|
126 |
+
for char in word:
|
127 |
+
is_vowel = char.lower() in vowels
|
128 |
+
if is_vowel and not prev_is_vowel:
|
129 |
+
count += 1
|
130 |
+
prev_is_vowel = is_vowel
|
131 |
+
|
132 |
+
if word.endswith('e'):
|
133 |
+
count -= 1
|
134 |
+
if word.endswith('le') and len(word) > 2 and word[-3] not in vowels:
|
135 |
+
count += 1
|
136 |
+
if count == 0:
|
137 |
+
count = 1
|
138 |
+
|
139 |
+
syllable_count += count
|
140 |
+
|
141 |
+
return syllable_count
|
142 |
+
|
143 |
def extract_audio_features(audio_file):
|
144 |
"""Extract audio features from an audio file."""
|
145 |
try:
|
|
|
265 |
print(f"Error in music detection: {str(e)}")
|
266 |
return False, []
|
267 |
|
268 |
+
# Enhanced detect_beats function for better rhythm analysis
|
269 |
def detect_beats(y, sr):
|
270 |
+
"""Detect beats and create a detailed rhythmic map of the audio."""
|
271 |
# Get tempo and beat frames
|
272 |
tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)
|
273 |
|
274 |
# Convert beat frames to time in seconds
|
275 |
beat_times = librosa.frames_to_time(beat_frames, sr=sr)
|
276 |
|
277 |
+
# Calculate beat strength to identify strong and weak beats
|
278 |
+
onset_env = librosa.onset.onset_strength(y=y, sr=sr)
|
279 |
+
beat_strengths = [onset_env[frame] for frame in beat_frames if frame < len(onset_env)]
|
280 |
+
|
281 |
+
# If we couldn't get strengths for all beats, use average for missing ones
|
282 |
+
if beat_strengths:
|
283 |
+
avg_strength = sum(beat_strengths) / len(beat_strengths)
|
284 |
+
while len(beat_strengths) < len(beat_times):
|
285 |
+
beat_strengths.append(avg_strength)
|
286 |
+
else:
|
287 |
+
beat_strengths = [1.0] * len(beat_times)
|
288 |
+
|
289 |
+
# Calculate time intervals between beats (for rhythm pattern detection)
|
290 |
+
intervals = []
|
291 |
+
for i in range(1, len(beat_times)):
|
292 |
+
intervals.append(beat_times[i] - beat_times[i-1])
|
293 |
+
|
294 |
+
# Try to detect time signature based on beat pattern
|
295 |
+
time_signature = 4 # Default assumption of 4/4 time
|
296 |
+
if len(beat_strengths) > 8:
|
297 |
+
strength_pattern = []
|
298 |
+
for i in range(0, len(beat_strengths), 2):
|
299 |
+
if i+1 < len(beat_strengths):
|
300 |
+
ratio = beat_strengths[i] / (beat_strengths[i+1] + 0.0001)
|
301 |
+
strength_pattern.append(ratio)
|
302 |
+
|
303 |
+
# Check if we have a clear 3/4 pattern (strong-weak-weak)
|
304 |
+
if strength_pattern:
|
305 |
+
three_pattern = sum(1 for r in strength_pattern if r > 1.2) / len(strength_pattern)
|
306 |
+
if three_pattern > 0.6:
|
307 |
+
time_signature = 3
|
308 |
+
|
309 |
+
# Group beats into phrases
|
310 |
+
phrases = []
|
311 |
+
current_phrase = []
|
312 |
+
|
313 |
+
for i in range(len(beat_times)):
|
314 |
+
current_phrase.append(i)
|
315 |
+
|
316 |
+
# Look for natural phrase boundaries
|
317 |
+
if i < len(beat_times) - 1:
|
318 |
+
is_stronger_next = False
|
319 |
+
if i < len(beat_strengths) - 1:
|
320 |
+
is_stronger_next = beat_strengths[i+1] > beat_strengths[i] * 1.2
|
321 |
+
|
322 |
+
is_longer_gap = False
|
323 |
+
if i < len(beat_times) - 1 and intervals:
|
324 |
+
current_gap = beat_times[i+1] - beat_times[i]
|
325 |
+
avg_gap = sum(intervals) / len(intervals)
|
326 |
+
is_longer_gap = current_gap > avg_gap * 1.3
|
327 |
+
|
328 |
+
if (is_stronger_next or is_longer_gap) and len(current_phrase) >= 2:
|
329 |
+
phrases.append(current_phrase)
|
330 |
+
current_phrase = []
|
331 |
+
|
332 |
+
# Add the last phrase if not empty
|
333 |
+
if current_phrase:
|
334 |
+
phrases.append(current_phrase)
|
335 |
+
|
336 |
return {
|
337 |
"tempo": tempo,
|
338 |
"beat_frames": beat_frames,
|
339 |
"beat_times": beat_times,
|
340 |
+
"beat_count": len(beat_times),
|
341 |
+
"beat_strengths": beat_strengths,
|
342 |
+
"intervals": intervals,
|
343 |
+
"time_signature": time_signature,
|
344 |
+
"phrases": phrases
|
345 |
}
|
346 |
|
347 |
def detect_sections(y, sr):
|
|
|
401 |
|
402 |
return sections
|
403 |
|
404 |
+
# New function: Create flexible syllable templates
|
405 |
+
def create_flexible_syllable_templates(beats_info):
|
406 |
+
"""Create syllable templates based purely on beat patterns without assuming song structure."""
|
407 |
+
# Get the beat times and strengths
|
408 |
+
beat_times = beats_info["beat_times"]
|
409 |
+
beat_strengths = beats_info.get("beat_strengths", [1.0] * len(beat_times))
|
410 |
+
phrases = beats_info.get("phrases", [])
|
411 |
+
|
412 |
+
# If no phrases were detected, create a simple division
|
413 |
+
if not phrases:
|
414 |
+
# Default to 4-beat phrases
|
415 |
+
phrases = []
|
416 |
+
for i in range(0, len(beat_times), 4):
|
417 |
+
end_idx = min(i + 4, len(beat_times))
|
418 |
+
if end_idx - i >= 2: # Ensure at least 2 beats per phrase
|
419 |
+
phrases.append(list(range(i, end_idx)))
|
420 |
+
|
421 |
+
# Create syllable templates for each phrase
|
422 |
+
syllable_templates = []
|
423 |
+
|
424 |
+
for phrase in phrases:
|
425 |
+
# Calculate appropriate syllable count for this phrase
|
426 |
+
beat_count = len(phrase)
|
427 |
+
phrase_strengths = [beat_strengths[i] for i in phrase if i < len(beat_strengths)]
|
428 |
+
avg_strength = sum(phrase_strengths) / len(phrase_strengths) if phrase_strengths else 1.0
|
429 |
+
|
430 |
+
# Base calculation: 1-2 syllables per beat depending on tempo
|
431 |
+
tempo = beats_info.get("tempo", 120)
|
432 |
+
if tempo > 120: # Fast tempo
|
433 |
+
syllables_per_beat = 1.0
|
434 |
+
elif tempo > 90: # Medium tempo
|
435 |
+
syllables_per_beat = 1.5
|
436 |
+
else: # Slow tempo
|
437 |
+
syllables_per_beat = 2.0
|
438 |
+
|
439 |
+
# Adjust for beat strength
|
440 |
+
syllables_per_beat *= (0.8 + (avg_strength * 0.4))
|
441 |
+
|
442 |
+
# Calculate total syllables for the phrase
|
443 |
+
phrase_syllables = int(beat_count * syllables_per_beat)
|
444 |
+
if phrase_syllables < 2:
|
445 |
+
phrase_syllables = 2
|
446 |
+
|
447 |
+
syllable_templates.append(str(phrase_syllables))
|
448 |
+
|
449 |
+
return "-".join(syllable_templates)
|
450 |
+
|
451 |
+
# New function: Analyze flexible structure
|
452 |
+
def analyze_flexible_structure(audio_data):
|
453 |
+
"""Analyze music structure without assuming traditional song sections."""
|
454 |
+
y = audio_data["waveform"]
|
455 |
+
sr = audio_data["sample_rate"]
|
456 |
+
|
457 |
+
# Enhanced beat detection
|
458 |
+
beats_info = detect_beats(y, sr)
|
459 |
+
|
460 |
+
# Identify segments with similar audio features (using MFCC)
|
461 |
+
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
|
462 |
+
|
463 |
+
# Use agglomerative clustering to find segment boundaries
|
464 |
+
segment_boundaries = librosa.segment.agglomerative(mfcc, 3)
|
465 |
+
segment_times = librosa.frames_to_time(segment_boundaries, sr=sr)
|
466 |
+
|
467 |
+
# Create segments
|
468 |
+
segments = []
|
469 |
+
for i in range(len(segment_times)-1):
|
470 |
+
start = segment_times[i]
|
471 |
+
end = segment_times[i+1]
|
472 |
+
|
473 |
+
# Find beats within this segment
|
474 |
+
segment_beats = []
|
475 |
+
for j, time in enumerate(beats_info["beat_times"]):
|
476 |
+
if start <= time < end:
|
477 |
+
segment_beats.append(j)
|
478 |
+
|
479 |
+
# Create syllable template for this segment
|
480 |
+
if segment_beats:
|
481 |
+
segment_beats_info = {
|
482 |
+
"beat_times": [beats_info["beat_times"][j] for j in segment_beats],
|
483 |
+
"tempo": beats_info.get("tempo", 120)
|
484 |
+
}
|
485 |
+
|
486 |
+
if "beat_strengths" in beats_info:
|
487 |
+
segment_beats_info["beat_strengths"] = [
|
488 |
+
beats_info["beat_strengths"][j] for j in segment_beats
|
489 |
+
if j < len(beats_info["beat_strengths"])
|
490 |
+
]
|
491 |
+
|
492 |
+
if "intervals" in beats_info:
|
493 |
+
segment_beats_info["intervals"] = beats_info["intervals"]
|
494 |
+
|
495 |
+
if "phrases" in beats_info:
|
496 |
+
# Filter phrases to include only beats in this segment
|
497 |
+
segment_phrases = []
|
498 |
+
for phrase in beats_info["phrases"]:
|
499 |
+
segment_phrase = [beat_idx for beat_idx in phrase if beat_idx in segment_beats]
|
500 |
+
if len(segment_phrase) >= 2:
|
501 |
+
segment_phrases.append(segment_phrase)
|
502 |
+
|
503 |
+
segment_beats_info["phrases"] = segment_phrases
|
504 |
+
|
505 |
+
syllable_template = create_flexible_syllable_templates(segment_beats_info)
|
506 |
+
else:
|
507 |
+
syllable_template = "4" # Default fallback
|
508 |
+
|
509 |
+
segments.append({
|
510 |
+
"start": start,
|
511 |
+
"end": end,
|
512 |
+
"duration": end - start,
|
513 |
+
"syllable_template": syllable_template
|
514 |
+
})
|
515 |
+
|
516 |
+
return {
|
517 |
+
"beats": beats_info,
|
518 |
+
"segments": segments
|
519 |
+
}
|
520 |
+
|
521 |
+
# Enhanced estimate_syllables_per_section function
|
522 |
def estimate_syllables_per_section(beats_info, sections):
|
523 |
"""Estimate the number of syllables needed for each section based on beats."""
|
524 |
syllables_per_section = []
|
|
|
533 |
# Calculate syllables based on section type and beat count
|
534 |
beat_count = len(section_beats)
|
535 |
|
536 |
+
# Extract beat strengths for this section if available
|
537 |
+
section_beat_strengths = []
|
538 |
+
if "beat_strengths" in beats_info:
|
539 |
+
for i, beat_time in enumerate(beats_info["beat_times"]):
|
540 |
+
if section["start"] <= beat_time < section["end"] and i < len(beats_info["beat_strengths"]):
|
541 |
+
section_beat_strengths.append(beats_info["beat_strengths"][i])
|
542 |
+
|
543 |
+
# Create a segment-specific beat info structure for template creation
|
544 |
+
segment_beats_info = {
|
545 |
+
"beat_times": section_beats,
|
546 |
+
"tempo": beats_info.get("tempo", 120)
|
547 |
+
}
|
548 |
+
|
549 |
+
if section_beat_strengths:
|
550 |
+
segment_beats_info["beat_strengths"] = section_beat_strengths
|
551 |
+
|
552 |
+
if "intervals" in beats_info:
|
553 |
+
segment_beats_info["intervals"] = beats_info["intervals"]
|
554 |
+
|
555 |
+
# Create a detailed syllable template for this section
|
556 |
+
syllable_template = create_flexible_syllable_templates(segment_beats_info)
|
557 |
+
|
558 |
+
# Calculate estimated syllable count
|
559 |
+
expected_counts = [int(count) for count in syllable_template.split("-")]
|
560 |
+
total_syllables = sum(expected_counts)
|
561 |
|
562 |
syllables_per_section.append({
|
563 |
"type": section["type"],
|
|
|
565 |
"end": section["end"],
|
566 |
"duration": section["duration"],
|
567 |
"beat_count": beat_count,
|
568 |
+
"syllable_count": total_syllables,
|
569 |
+
"syllable_template": syllable_template
|
570 |
})
|
571 |
|
572 |
return syllables_per_section
|
|
|
576 |
y = audio_data["waveform"]
|
577 |
sr = audio_data["sample_rate"]
|
578 |
|
579 |
+
# Enhanced beat detection
|
580 |
beats_info = detect_beats(y, sr)
|
581 |
|
582 |
# Detect sections
|
583 |
sections = detect_sections(y, sr)
|
584 |
|
585 |
+
# Create enhanced syllable info per section
|
586 |
syllables_info = estimate_syllables_per_section(beats_info, sections)
|
587 |
|
588 |
+
# Get flexible structure analysis as an alternative approach
|
589 |
+
try:
|
590 |
+
flexible_structure = analyze_flexible_structure(audio_data)
|
591 |
+
except Exception as e:
|
592 |
+
print(f"Warning: Flexible structure analysis failed: {str(e)}")
|
593 |
+
flexible_structure = None
|
594 |
+
|
595 |
return {
|
596 |
"beats": beats_info,
|
597 |
"sections": sections,
|
598 |
+
"syllables": syllables_info,
|
599 |
+
"flexible_structure": flexible_structure
|
600 |
}
|
601 |
|
602 |
+
# New function: Verify syllable counts
|
603 |
+
def verify_flexible_syllable_counts(lyrics, templates):
|
604 |
+
"""Verify that the generated lyrics match the required syllable counts."""
|
605 |
+
# Split lyrics into lines
|
606 |
+
lines = [line.strip() for line in lyrics.split("\n") if line.strip()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
607 |
|
608 |
+
# Check syllable counts for each line
|
609 |
+
verification_notes = []
|
610 |
+
|
611 |
+
for i, line in enumerate(lines):
|
612 |
+
if i >= len(templates):
|
613 |
+
break
|
614 |
+
|
615 |
+
template = templates[i]
|
616 |
+
|
617 |
+
# Handle different template formats
|
618 |
+
if isinstance(template, dict) and "syllable_template" in template:
|
619 |
+
expected_counts = [int(count) for count in template["syllable_template"].split("-")]
|
620 |
+
elif isinstance(template, str):
|
621 |
+
expected_counts = [int(count) for count in template.split("-")]
|
622 |
+
else:
|
623 |
+
continue
|
624 |
+
|
625 |
+
# Count actual syllables
|
626 |
+
actual_count = count_syllables(line)
|
627 |
+
|
628 |
+
# Calculate difference
|
629 |
+
total_expected = sum(expected_counts)
|
630 |
+
if abs(actual_count - total_expected) > 2: # Allow small differences
|
631 |
+
verification_notes.append(f"Line {i+1}: Expected {total_expected} syllables, got {actual_count}")
|
632 |
+
|
633 |
+
# If we found issues, add them as notes at the end of the lyrics
|
634 |
+
if verification_notes:
|
635 |
+
lyrics += "\n\n[Note: Potential rhythm mismatches in these lines:]\n"
|
636 |
+
lyrics += "\n".join(verification_notes)
|
637 |
+
lyrics += "\n[You may want to adjust these lines to match the music's rhythm better]"
|
638 |
+
|
639 |
+
return lyrics
|
640 |
+
|
641 |
+
# Modified generate_lyrics function
|
642 |
+
def generate_lyrics(genre, duration, emotion_results, song_structure=None):
|
643 |
+
"""Generate lyrics based on the genre, emotion, and structure analysis."""
|
644 |
# Extract emotion and theme data from analysis results
|
645 |
primary_emotion = emotion_results["emotion_analysis"]["primary_emotion"]
|
646 |
primary_theme = emotion_results["theme_analysis"]["primary_theme"]
|
|
|
654 |
key = emotion_results["tonal_analysis"]["key"]
|
655 |
mode = emotion_results["tonal_analysis"]["mode"]
|
656 |
|
657 |
+
# Format syllable templates for the prompt
|
658 |
+
syllable_guidance = ""
|
659 |
+
templates_for_verification = []
|
660 |
+
|
661 |
+
if song_structure:
|
662 |
+
# Try to use flexible structure if available
|
663 |
+
if "flexible_structure" in song_structure and song_structure["flexible_structure"]:
|
664 |
+
flexible = song_structure["flexible_structure"]
|
665 |
+
if "segments" in flexible and flexible["segments"]:
|
666 |
+
syllable_guidance = "Follow these exact syllable patterns for each line:\n"
|
667 |
+
|
668 |
+
for i, segment in enumerate(flexible["segments"]):
|
669 |
+
if i < 15: # Limit to 15 lines to keep prompt manageable
|
670 |
+
syllable_guidance += f"Line {i+1}: {segment['syllable_template']} syllables\n"
|
671 |
+
templates_for_verification.append(segment["syllable_template"])
|
672 |
+
|
673 |
+
# Fallback to traditional sections if needed
|
674 |
+
elif "syllables" in song_structure and song_structure["syllables"]:
|
675 |
+
syllable_guidance = "Follow these syllable patterns for each section:\n"
|
676 |
+
|
677 |
+
for section in song_structure["syllables"]:
|
678 |
+
if "syllable_template" in section:
|
679 |
+
syllable_guidance += f"[{section['type'].capitalize()}]: {section['syllable_template']} syllables per line\n"
|
680 |
+
elif "syllable_count" in section:
|
681 |
+
syllable_guidance += f"[{section['type'].capitalize()}]: ~{section['syllable_count']} syllables total\n"
|
682 |
+
|
683 |
+
if "syllable_template" in section:
|
684 |
+
templates_for_verification.append(section)
|
685 |
+
|
686 |
+
# If we couldn't get specific templates, use general guidance
|
687 |
+
if not syllable_guidance:
|
688 |
+
syllable_guidance = "Make sure each line has an appropriate syllable count for singing:\n"
|
689 |
+
syllable_guidance += "- For faster sections (tempo > 120 BPM): 4-6 syllables per line\n"
|
690 |
+
syllable_guidance += "- For medium tempo sections: 6-8 syllables per line\n"
|
691 |
+
syllable_guidance += "- For slower sections (tempo < 90 BPM): 8-10 syllables per line\n"
|
692 |
+
|
693 |
+
# Add examples of syllable counting
|
694 |
+
syllable_guidance += "\nExamples of syllable counting:\n"
|
695 |
+
syllable_guidance += "- 'I can see the light' = 4 syllables\n"
|
696 |
+
syllable_guidance += "- 'When it fades a-way' = 4 syllables\n"
|
697 |
+
syllable_guidance += "- 'The sun is shin-ing bright to-day' = 8 syllables\n"
|
698 |
+
syllable_guidance += "- 'I'll be wait-ing for you' = 6 syllables\n"
|
699 |
+
|
700 |
+
# Determine if we should use traditional sections or not
|
701 |
+
use_sections = True
|
702 |
+
if song_structure and "flexible_structure" in song_structure and song_structure["flexible_structure"]:
|
703 |
+
# If we have more than 4 segments, it's likely not a traditional song structure
|
704 |
+
if "segments" in song_structure["flexible_structure"]:
|
705 |
+
segments = song_structure["flexible_structure"]["segments"]
|
706 |
+
if len(segments) > 4:
|
707 |
+
use_sections = False
|
708 |
+
|
709 |
+
# Create enhanced prompt for the LLM
|
710 |
+
if use_sections:
|
711 |
+
# Traditional approach with sections
|
712 |
+
# Calculate appropriate lyrics length and section distribution
|
713 |
+
try:
|
714 |
+
if song_structure and "beats" in song_structure:
|
715 |
+
beats_info = song_structure["beats"]
|
716 |
+
tempo = beats_info.get("tempo", 120)
|
717 |
+
time_signature = beats_info.get("time_signature", 4)
|
718 |
+
lines_structure = calculate_lyrics_length(duration, tempo, time_signature)
|
719 |
+
|
720 |
+
# Handle both possible return types
|
721 |
+
if isinstance(lines_structure, dict):
|
722 |
+
total_lines = lines_structure["lines_count"]
|
723 |
+
|
724 |
+
# Extract section line counts if available
|
725 |
+
verse_lines = 0
|
726 |
+
chorus_lines = 0
|
727 |
+
bridge_lines = 0
|
728 |
+
|
729 |
+
for section in lines_structure["sections"]:
|
730 |
+
if section["type"] == "verse":
|
731 |
+
verse_lines = section["lines"]
|
732 |
+
elif section["type"] == "chorus":
|
733 |
+
chorus_lines = section["lines"]
|
734 |
+
elif section["type"] == "bridge":
|
735 |
+
bridge_lines = section["lines"]
|
736 |
+
else:
|
737 |
+
# The function returned just an integer (old behavior)
|
738 |
+
total_lines = lines_structure
|
739 |
+
|
740 |
+
# Default section distribution based on total lines
|
741 |
+
if total_lines <= 6:
|
742 |
+
verse_lines = 2
|
743 |
+
chorus_lines = 2
|
744 |
+
bridge_lines = 0
|
745 |
+
elif total_lines <= 10:
|
746 |
+
verse_lines = 3
|
747 |
+
chorus_lines = 2
|
748 |
+
bridge_lines = 0
|
749 |
+
else:
|
750 |
+
verse_lines = 3
|
751 |
+
chorus_lines = 2
|
752 |
+
bridge_lines = 2
|
753 |
+
else:
|
754 |
+
# Fallback to simple calculation
|
755 |
+
total_lines = max(4, int(duration / 10))
|
756 |
+
|
757 |
+
# Default section distribution
|
758 |
+
if total_lines <= 6:
|
759 |
+
verse_lines = 2
|
760 |
+
chorus_lines = 2
|
761 |
+
bridge_lines = 0
|
762 |
+
elif total_lines <= 10:
|
763 |
+
verse_lines = 3
|
764 |
+
chorus_lines = 2
|
765 |
+
bridge_lines = 0
|
766 |
+
else:
|
767 |
+
verse_lines = 3
|
768 |
+
chorus_lines = 2
|
769 |
+
bridge_lines = 2
|
770 |
+
except Exception as e:
|
771 |
+
print(f"Error calculating lyrics length: {str(e)}")
|
772 |
+
total_lines = max(4, int(duration / 10))
|
773 |
+
|
774 |
+
# Default section distribution
|
775 |
+
verse_lines = 3
|
776 |
+
chorus_lines = 2
|
777 |
+
bridge_lines = 0
|
778 |
+
|
779 |
+
prompt = f"""
|
780 |
You are a talented songwriter who specializes in {genre} music.
|
781 |
Write original {genre} song lyrics for a song that is {duration:.1f} seconds long.
|
782 |
|
|
|
786 |
- Primary emotion: {primary_emotion}
|
787 |
- Primary theme: {primary_theme}
|
788 |
|
789 |
+
IMPORTANT: The lyrics must match the rhythm of the music exactly!
|
790 |
+
{syllable_guidance}
|
791 |
+
|
792 |
+
When writing the lyrics:
|
793 |
+
1. Count syllables carefully for each line to match the specified pattern
|
794 |
+
2. Ensure words fall naturally on the beat
|
795 |
+
3. Place stressed syllables on strong beats
|
796 |
+
4. Create a coherent theme throughout the lyrics
|
797 |
+
|
798 |
The lyrics should:
|
799 |
- Perfectly capture the essence and style of {genre} music
|
800 |
- Express the {primary_emotion} emotion and {primary_theme} theme
|
801 |
+
- Be approximately {total_lines} lines long
|
|
|
802 |
- Follow this structure:
|
803 |
* Verse: {verse_lines} lines
|
804 |
* Chorus: {chorus_lines} lines
|
805 |
+
* {f'Bridge: {bridge_lines} lines' if bridge_lines > 0 else ''}
|
806 |
- Be completely original
|
807 |
- Match the song duration of {duration:.1f} seconds
|
808 |
+
|
809 |
+
Your lyrics:
|
810 |
+
"""
|
811 |
+
else:
|
812 |
+
# Flexible approach without traditional sections
|
813 |
+
prompt = f"""
|
814 |
+
You are a talented songwriter who specializes in {genre} music.
|
815 |
+
Write original lyrics that match the rhythm of a {genre} music segment that is {duration:.1f} seconds long.
|
816 |
+
|
817 |
+
Music analysis has detected the following qualities:
|
818 |
+
- Tempo: {tempo:.1f} BPM
|
819 |
+
- Key: {key} {mode}
|
820 |
+
- Primary emotion: {primary_emotion}
|
821 |
+
- Primary theme: {primary_theme}
|
822 |
+
|
823 |
+
IMPORTANT: The lyrics must match the rhythm of the music exactly!
|
824 |
+
{syllable_guidance}
|
825 |
+
|
826 |
+
When writing the lyrics:
|
827 |
+
1. Count syllables carefully for each line to match the specified pattern
|
828 |
+
2. Ensure words fall naturally on the beat
|
829 |
+
3. Place stressed syllables on strong beats
|
830 |
+
4. Create coherent lyrics that would work for this music segment
|
831 |
+
|
832 |
+
The lyrics should:
|
833 |
+
- Perfectly capture the essence and style of {genre} music
|
834 |
+
- Express the {primary_emotion} emotion and {primary_theme} theme
|
835 |
+
- Be completely original
|
836 |
+
- Maintain a consistent theme throughout
|
837 |
+
- Match the audio segment duration of {duration:.1f} seconds
|
838 |
+
|
839 |
+
DON'T include any section labels like [Verse] or [Chorus] unless specifically instructed.
|
840 |
+
Instead, write lyrics that flow naturally and match the music's rhythm.
|
841 |
|
842 |
Your lyrics:
|
843 |
"""
|
|
|
855 |
# Extract and clean generated lyrics
|
856 |
lyrics = response[0]["generated_text"].strip()
|
857 |
|
858 |
+
# Verify syllable counts if we have templates
|
859 |
+
if templates_for_verification:
|
860 |
+
lyrics = verify_flexible_syllable_counts(lyrics, templates_for_verification)
|
861 |
+
|
862 |
+
# Add section labels if they're not present and we're using the traditional approach
|
863 |
+
if use_sections and "Verse" not in lyrics and "Chorus" not in lyrics:
|
864 |
lines = lyrics.split('\n')
|
865 |
formatted_lyrics = []
|
866 |
+
|
867 |
+
line_count = 0
|
868 |
for i, line in enumerate(lines):
|
869 |
+
if not line.strip():
|
870 |
+
formatted_lyrics.append(line)
|
871 |
+
continue
|
872 |
+
|
873 |
+
if line_count == 0:
|
874 |
formatted_lyrics.append("[Verse]")
|
875 |
+
elif line_count == verse_lines:
|
876 |
formatted_lyrics.append("\n[Chorus]")
|
877 |
+
elif line_count == verse_lines + chorus_lines and bridge_lines > 0:
|
878 |
formatted_lyrics.append("\n[Bridge]")
|
879 |
+
|
880 |
formatted_lyrics.append(line)
|
881 |
+
line_count += 1
|
882 |
+
|
883 |
lyrics = '\n'.join(formatted_lyrics)
|
884 |
|
885 |
return lyrics
|
|
|
934 |
# Continue with a simpler approach if this fails
|
935 |
song_structure = None
|
936 |
|
937 |
+
# Generate lyrics based on top genre, emotion analysis, and song structure
|
938 |
try:
|
939 |
primary_genre, _ = top_genres[0]
|
940 |
+
lyrics = generate_lyrics(primary_genre, audio_data["duration"], emotion_results, song_structure)
|
941 |
except Exception as e:
|
942 |
print(f"Error generating lyrics: {str(e)}")
|
943 |
lyrics = f"Error generating lyrics: {str(e)}"
|
|
|
993 |
emotion_text += "\n\nSong Structure:\n"
|
994 |
for section in song_structure["syllables"]:
|
995 |
emotion_text += f"- {section['type'].capitalize()}: {section['start']:.1f}s to {section['end']:.1f}s "
|
996 |
+
emotion_text += f"({section['duration']:.1f}s, {section['beat_count']} beats, "
|
997 |
+
|
998 |
+
if "syllable_template" in section:
|
999 |
+
emotion_text += f"template: {section['syllable_template']})\n"
|
1000 |
+
else:
|
1001 |
+
emotion_text += f"~{section['syllable_count']} syllables)\n"
|
1002 |
+
|
1003 |
+
# Add flexible structure info if available
|
1004 |
+
if "flexible_structure" in song_structure and song_structure["flexible_structure"]:
|
1005 |
+
flexible = song_structure["flexible_structure"]
|
1006 |
+
if "segments" in flexible and flexible["segments"]:
|
1007 |
+
emotion_text += "\nDetailed Rhythm Analysis:\n"
|
1008 |
+
for i, segment in enumerate(flexible["segments"][:5]): # Show first 5 segments
|
1009 |
+
emotion_text += f"- Segment {i+1}: {segment['start']:.1f}s to {segment['end']:.1f}s, "
|
1010 |
+
emotion_text += f"pattern: {segment['syllable_template']}\n"
|
1011 |
+
|
1012 |
+
if len(flexible["segments"]) > 5:
|
1013 |
+
emotion_text += f" (+ {len(flexible['segments']) - 5} more segments)\n"
|
1014 |
+
|
1015 |
except Exception as e:
|
1016 |
print(f"Error displaying song structure: {str(e)}")
|
1017 |
# Continue without showing structure details
|
|
|
1046 |
2. The system will classify the genre using the dima806/music_genres_classification model
|
1047 |
3. The system will analyze the musical emotion and theme using advanced audio processing
|
1048 |
4. The system will identify the song structure, beats, and timing patterns
|
1049 |
+
5. The system will create syllable templates that precisely match the rhythm of the music
|
1050 |
+
6. Based on the detected genre, emotion, and syllable templates, it will generate lyrics that align perfectly with the beats
|
1051 |
+
7. The system verifies syllable counts to ensure the generated lyrics can be sung naturally with the music
|
1052 |
""")
|
1053 |
|
1054 |
# Launch the app
|
requirements.txt
CHANGED
@@ -11,4 +11,5 @@ sentencepiece>=0.1.99
|
|
11 |
safetensors>=0.4.1
|
12 |
scipy>=1.12.0
|
13 |
soundfile>=0.12.1
|
14 |
-
matplotlib>=3.7.0
|
|
|
|
11 |
safetensors>=0.4.1
|
12 |
scipy>=1.12.0
|
13 |
soundfile>=0.12.1
|
14 |
+
matplotlib>=3.7.0
|
15 |
+
pronouncing>=0.2.0
|
utils.py
CHANGED
@@ -37,39 +37,53 @@ def extract_mfcc_features(y, sr, n_mfcc=20):
|
|
37 |
# Return a fallback feature vector if extraction fails
|
38 |
return np.zeros(n_mfcc)
|
39 |
|
40 |
-
def calculate_lyrics_length(duration):
|
41 |
-
"""
|
42 |
-
|
43 |
-
|
44 |
-
- Average words per line (8-10 words)
|
45 |
-
- Reduced words per minute (45 words instead of 135)
|
46 |
-
- Simplified song structure
|
47 |
-
"""
|
48 |
-
# Convert duration to minutes
|
49 |
-
duration_minutes = duration / 60
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
-
|
54 |
|
55 |
-
#
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
59 |
|
60 |
-
#
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
70 |
else:
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
def format_genre_results(top_genres):
|
75 |
"""Format genre classification results for display."""
|
|
|
37 |
# Return a fallback feature vector if extraction fails
|
38 |
return np.zeros(n_mfcc)
|
39 |
|
40 |
+
def calculate_lyrics_length(duration, tempo=100, time_signature=4):
|
41 |
+
"""Calculate appropriate lyrics structure based on musical principles."""
|
42 |
+
# Legacy behavior - simple calculation based on duration
|
43 |
+
lines_count = max(4, int(duration / 10))
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
# If only duration was provided (original usage), return just the integer
|
46 |
+
if not isinstance(tempo, (int, float)) or not isinstance(time_signature, (int, float)):
|
47 |
+
return lines_count
|
48 |
|
49 |
+
# Enhanced calculation
|
50 |
+
beats_per_minute = tempo
|
51 |
+
beats_per_second = beats_per_minute / 60
|
52 |
+
total_beats = duration * beats_per_second
|
53 |
+
total_measures = total_beats / time_signature
|
54 |
|
55 |
+
# Determine section distributions
|
56 |
+
verse_lines = 0
|
57 |
+
chorus_lines = 0
|
58 |
+
bridge_lines = 0
|
59 |
+
|
60 |
+
if lines_count <= 6:
|
61 |
+
verse_lines = 2
|
62 |
+
chorus_lines = 2
|
63 |
+
elif lines_count <= 10:
|
64 |
+
verse_lines = 3
|
65 |
+
chorus_lines = 2
|
66 |
else:
|
67 |
+
verse_lines = 3
|
68 |
+
chorus_lines = 2
|
69 |
+
bridge_lines = 2
|
70 |
+
|
71 |
+
# Create structured output
|
72 |
+
song_structure = {
|
73 |
+
"total_measures": int(total_measures),
|
74 |
+
"lines_count": lines_count, # Include the original line count
|
75 |
+
"sections": [
|
76 |
+
{"type": "verse", "lines": verse_lines, "measures": int(total_measures * 0.4)},
|
77 |
+
{"type": "chorus", "lines": chorus_lines, "measures": int(total_measures * 0.3)}
|
78 |
+
]
|
79 |
+
}
|
80 |
+
|
81 |
+
if bridge_lines > 0:
|
82 |
+
song_structure["sections"].append(
|
83 |
+
{"type": "bridge", "lines": bridge_lines, "measures": int(total_measures * 0.2)}
|
84 |
+
)
|
85 |
+
|
86 |
+
return song_structure
|
87 |
|
88 |
def format_genre_results(top_genres):
|
89 |
"""Format genre classification results for display."""
|