|
from huggingface_hub import InferenceClient |
|
import gradio as gr |
|
import random |
|
import tempfile |
|
import asyncio |
|
from streaming_stt_nemo import Model |
|
import edge_tts |
|
from langchain_community.tools import DuckDuckGoSearchRun |
|
|
|
API_URL = "https://api-inference.huggingface.co/models/" |
|
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1") |
|
|
|
|
|
duckduckgo_search = DuckDuckGoSearchRun() |
|
|
|
|
|
default_lang = "en" |
|
engines = { default_lang: Model(default_lang) } |
|
|
|
def transcribe(audio): |
|
"""Transcribes the audio file to text.""" |
|
lang = "en" |
|
model = engines[lang] |
|
text = model.stt_file(audio)[0] |
|
return text |
|
|
|
def format_prompt(message, history): |
|
"""Formats the prompt for the language model.""" |
|
prompt = "<s>" |
|
for user_prompt, bot_response in history: |
|
prompt += f"[INST] {user_prompt} [/INST]" |
|
prompt += f" {bot_response}</s> " |
|
prompt += f"[INST] {message} [/INST]" |
|
return prompt |
|
|
|
def generate(prompt, history, temperature=0.9, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0): |
|
"""Generates a response from the language model.""" |
|
temperature = float(temperature) |
|
if temperature < 1e-2: |
|
temperature = 1e-2 |
|
top_p = float(top_p) |
|
|
|
generate_kwargs = dict( |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
seed=random.randint(0, 10**7), |
|
) |
|
|
|
formatted_prompt = format_prompt(prompt, history) |
|
|
|
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
|
|
for response in stream: |
|
output += response.token.text |
|
yield output |
|
|
|
search_result = duckduckgo_search.run(prompt) |
|
if search_result: |
|
yield search_result |
|
else: |
|
yield "Sorry, I couldn't find any relevant information." |
|
|
|
async def respond(audio): |
|
"""Handles the full pipeline: transcribe, generate response, and TTS.""" |
|
try: |
|
|
|
user_text = transcribe(audio) |
|
|
|
|
|
history = [] |
|
response_generator = generate(user_text, history) |
|
response_text = "" |
|
for response in response_generator: |
|
response_text = response |
|
|
|
|
|
communicate = edge_tts.Communicate(response_text) |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: |
|
tmp_path = tmp_file.name |
|
await communicate.save(tmp_path) |
|
return response_text, tmp_path |
|
except Exception as e: |
|
return str(e), None |
|
|
|
additional_inputs = [ |
|
gr.Slider( |
|
label="Temperature", |
|
value=0.9, |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.05, |
|
interactive=True, |
|
info="Higher values produce more diverse outputs", |
|
), |
|
gr.Slider( |
|
label="Max new tokens", |
|
value=512, |
|
minimum=64, |
|
maximum=1024, |
|
step=64, |
|
interactive=True, |
|
info="The maximum numbers of new tokens", |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
value=0.90, |
|
minimum=0.0, |
|
maximum=1, |
|
step=0.05, |
|
interactive=True, |
|
info="Higher values sample more low-probability tokens", |
|
), |
|
gr.Slider( |
|
label="Repetition penalty", |
|
value=1.2, |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.05, |
|
interactive=True, |
|
info="Penalize repeated tokens", |
|
) |
|
] |
|
|
|
customCSS = """ |
|
#component-7 { # this is the default element ID of the chat component |
|
height: 800px; # adjust the height as needed |
|
flex-grow: 1; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=customCSS) as demo: |
|
gr.Markdown("# RAG_FRIDAY_4.0🤖 WELCOME TO OPEN-SOURCE FREEDOM🤗(like never before)") |
|
gr.Markdown("Getting real-time updated results for prompts is still proprietary in the face of GPT-4, Co-Pilot etc. This app serves as an open-source alternative for this! UPDATE: Previous version of this app i.e. RAG_FRIDAY_mark_3 is also available, this is just a upgrade providing voice-based search comfort for users") |
|
|
|
with gr.Row(): |
|
input_audio = gr.Audio(label="Voice Chat (BETA)", sources="microphone", type="filepath", waveform_options=False) |
|
output_text = gr.Textbox(label="Text Response") |
|
output_audio = gr.Audio(label="JARVIS", type="filepath", interactive=False, autoplay=True, elem_classes="audio") |
|
gr.Interface(fn=respond, inputs=[input_audio], outputs=[output_text, output_audio], live=True) |
|
|
|
gr.Markdown("## Additional Parameters") |
|
for slider in additional_inputs: |
|
slider.render() |
|
|
|
demo.queue().launch(debug=True) |
|
|