itsanurag's picture
Update app.py
537b839 verified
from huggingface_hub import InferenceClient
import gradio as gr
import random
import tempfile
import asyncio
from streaming_stt_nemo import Model
import edge_tts
from langchain_community.tools import DuckDuckGoSearchRun
API_URL = "https://api-inference.huggingface.co/models/"
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1")
# Initialize DuckDuckGo search tool
duckduckgo_search = DuckDuckGoSearchRun()
# Initialize ASR model
default_lang = "en"
engines = { default_lang: Model(default_lang) }
def transcribe(audio):
"""Transcribes the audio file to text."""
lang = "en"
model = engines[lang]
text = model.stt_file(audio)[0]
return text
def format_prompt(message, history):
"""Formats the prompt for the language model."""
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(prompt, history, temperature=0.9, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0):
"""Generates a response from the language model."""
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=random.randint(0, 10**7),
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
search_result = duckduckgo_search.run(prompt)
if search_result:
yield search_result
else:
yield "Sorry, I couldn't find any relevant information."
async def respond(audio):
"""Handles the full pipeline: transcribe, generate response, and TTS."""
try:
# Transcribe audio to text
user_text = transcribe(audio)
# Generate response using the language model
history = []
response_generator = generate(user_text, history)
response_text = ""
for response in response_generator:
response_text = response
# Convert the text response to speech
communicate = edge_tts.Communicate(response_text)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return response_text, tmp_path
except Exception as e:
return str(e), None
additional_inputs = [
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=512,
minimum=64,
maximum=1024,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
customCSS = """
#component-7 { # this is the default element ID of the chat component
height: 800px; # adjust the height as needed
flex-grow: 1;
}
"""
with gr.Blocks(css=customCSS) as demo:
gr.Markdown("# RAG_FRIDAY_4.0🤖 WELCOME TO OPEN-SOURCE FREEDOM🤗(like never before)")
gr.Markdown("Getting real-time updated results for prompts is still proprietary in the face of GPT-4, Co-Pilot etc. This app serves as an open-source alternative for this! UPDATE: Previous version of this app i.e. RAG_FRIDAY_mark_3 is also available, this is just a upgrade providing voice-based search comfort for users")
with gr.Row():
input_audio = gr.Audio(label="Voice Chat (BETA)", sources="microphone", type="filepath", waveform_options=False)
output_text = gr.Textbox(label="Text Response")
output_audio = gr.Audio(label="JARVIS", type="filepath", interactive=False, autoplay=True, elem_classes="audio")
gr.Interface(fn=respond, inputs=[input_audio], outputs=[output_text, output_audio], live=True)
gr.Markdown("## Additional Parameters")
for slider in additional_inputs:
slider.render()
demo.queue().launch(debug=True)