from huggingface_hub import InferenceClient import gradio as gr import random import tempfile import asyncio from streaming_stt_nemo import Model import edge_tts from langchain_community.tools import DuckDuckGoSearchRun API_URL = "https://api-inference.huggingface.co/models/" client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1") # Initialize DuckDuckGo search tool duckduckgo_search = DuckDuckGoSearchRun() # Initialize ASR model default_lang = "en" engines = { default_lang: Model(default_lang) } def transcribe(audio): """Transcribes the audio file to text.""" lang = "en" model = engines[lang] text = model.stt_file(audio)[0] return text def format_prompt(message, history): """Formats the prompt for the language model.""" prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate(prompt, history, temperature=0.9, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0): """Generates a response from the language model.""" temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=random.randint(0, 10**7), ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output search_result = duckduckgo_search.run(prompt) if search_result: yield search_result else: yield "Sorry, I couldn't find any relevant information." async def respond(audio): """Handles the full pipeline: transcribe, generate response, and TTS.""" try: # Transcribe audio to text user_text = transcribe(audio) # Generate response using the language model history = [] response_generator = generate(user_text, history) response_text = "" for response in response_generator: response_text = response # Convert the text response to speech communicate = edge_tts.Communicate(response_text) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) return response_text, tmp_path except Exception as e: return str(e), None additional_inputs = [ gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=512, minimum=64, maximum=1024, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] customCSS = """ #component-7 { # this is the default element ID of the chat component height: 800px; # adjust the height as needed flex-grow: 1; } """ with gr.Blocks(css=customCSS) as demo: gr.Markdown("# RAG_FRIDAY_4.0🤖 WELCOME TO OPEN-SOURCE FREEDOM🤗(like never before)") gr.Markdown("Getting real-time updated results for prompts is still proprietary in the face of GPT-4, Co-Pilot etc. This app serves as an open-source alternative for this! UPDATE: Previous version of this app i.e. RAG_FRIDAY_mark_3 is also available, this is just a upgrade providing voice-based search comfort for users") with gr.Row(): input_audio = gr.Audio(label="Voice Chat (BETA)", sources="microphone", type="filepath", waveform_options=False) output_text = gr.Textbox(label="Text Response") output_audio = gr.Audio(label="JARVIS", type="filepath", interactive=False, autoplay=True, elem_classes="audio") gr.Interface(fn=respond, inputs=[input_audio], outputs=[output_text, output_audio], live=True) gr.Markdown("## Additional Parameters") for slider in additional_inputs: slider.render() demo.queue().launch(debug=True)