File size: 7,946 Bytes
57d40ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Data Science Analysis Notebook\n",
    "\n",
    "This notebook contains some example Python code for data analysis."
   ]
  },
  {
   "cell_type": "markdown",
   "id": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "#  Create a function to summarize the code.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "At first, we will start by importing the pandas and numpy modules.\n",
    " Then we will use the seaborn library.\n",
    " Next step is to set the style of the visualization.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Import libraries\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns\n",
    "\n",
    "# Set visualization style\n",
    "sns.set(style='whitegrid')\n",
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "markdown",
   "id": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create a function summarize and load the dataset.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "To Load the dataset\n",
    " To display the basic information, use the print statement in the function.\n",
    " To print the dataset shape and head method.\n",
    "\n",
    " Create a new dataframe with the shape of the dataframe and the head method"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load the dataset\n",
    "df = pd.read_csv('housing_data.csv')\n",
    "\n",
    "# Display basic information\n",
    "print(f\"Dataset shape: {df.shape}\")\n",
    "df.head()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create a function summarize to perform the data cleaning.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "In the for loop we iterate through the dataframe and fill missing values with median.\n",
    " For each column in the dataframe, we check if the column is float64 or int64 type. If it is then we use the mode() function"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Perform data cleaning\n",
    "# Fill missing values with median\n",
    "for column in df.columns:\n",
    "    if df[column].dtype in ['float64', 'int64']:\n",
    "        df[column].fillna(df[column].median(), inplace=True)\n",
    "    else:\n",
    "        df[column].fillna(df[column].mode()[0], inplace=True)\n",
    "\n",
    "# Check for remaining missing values\n",
    "print(\"Missing values after cleaning:\")\n",
    "print(df.isnull().sum())"
   ]
  },
  {
   "cell_type": "markdown",
   "id": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "#  Create a function to summarize the data.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "For each column in the dataframe, create a list of numeric columns.\n",
    " Then create a correlation matrix.\n",
    " Next step is to create a function that takes in a dataframe and returns the correlation matrix as an argument."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Exploratory data analysis\n",
    "# Create correlation matrix\n",
    "numeric_columns = df.select_dtypes(include=['float64', 'int64']).columns\n",
    "correlation_matrix = df[numeric_columns].corr()\n",
    "\n",
    "# Plot heatmap\n",
    "plt.figure(figsize=(12, 10))\n",
    "sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5)\n",
    "plt.title('Correlation Matrix of Numeric Features', fontsize=18)\n",
    "plt.xticks(rotation=45, ha='right')\n",
    "plt.tight_layout()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "#  Create a variable called bedrooms_ratio and rooms_per_household.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "If 'bedrooms' in the column and total_rooms is the column then create a new feature and scale it.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Feature engineering\n",
    "# Create new features\n",
    "if 'bedrooms' in df.columns and 'total_rooms' in df.columns:\n",
    "    df['bedrooms_ratio'] = df['bedrooms'] / df['total_rooms']\n",
    "\n",
    "if 'total_rooms' in df.columns and 'households' in df.columns:\n",
    "    df['rooms_per_household'] = df['total_rooms'] / df['households']\n",
    "\n",
    "# Scale numeric features\n",
    "from sklearn.preprocessing import StandardScaler\n",
    "scaler = StandardScaler()\n",
    "df[numeric_columns] = scaler.fit_transform(df[numeric_columns])\n",
    "\n",
    "# Display transformed data\n",
    "df.head()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "#  Create a simple prediction model\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "This function will build a model that can be used to train and evaluate the model.\n",
    " Next step is to split the dataframe into training and test data and predict the median_house_value column using the train_test_split function."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Build a simple prediction model\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.linear_model import LinearRegression\n",
    "from sklearn.metrics import mean_squared_error, r2_score\n",
    "\n",
    "# Assume we're predicting median_house_value\n",
    "if 'median_house_value' in df.columns:\n",
    "    # Prepare features and target\n",
    "    X = df.drop('median_house_value', axis=1)\n",
    "    y = df['median_house_value']\n",
    "    \n",
    "    # Split the data\n",
    "    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
    "    \n",
    "    # Train the model\n",
    "    model = LinearRegression()\n",
    "    model.fit(X_train, y_train)\n",
    "    \n",
    "    # Make predictions\n",
    "    y_pred = model.predict(X_test)\n",
    "    \n",
    "    # Evaluate the model\n",
    "    mse = mean_squared_error(y_test, y_pred)\n",
    "    r2 = r2_score(y_test, y_pred)\n",
    "    \n",
    "    print(f\"Mean Squared Error: {mse:.2f}\")\n",
    "    print(f\"R² Score: {r2:.2f}\")\n",
    "    \n",
    "    # Plot actual vs predicted values\n",
    "    plt.figure(figsize=(10, 6))\n",
    "    plt.scatter(y_test, y_pred, alpha=0.5)\n",
    "    plt.plot([y.min(), y.max()], [y.min(), y.max()], 'r--')\n",
    "    plt.xlabel('Actual Values')\n",
    "    plt.ylabel('Predicted Values')\n",
    "    plt.title('Actual vs Predicted Values')\n",
    "    plt.tight_layout()\n",
    "    plt.show()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}