Spaces:
Sleeping
Sleeping
summarizer version 1: used a different model for creating a summary. The summary generated includes the title in the first sentence.
Browse files- enhanced_notebook.ipynb +298 -0
- notebook_enhancer.py +48 -48
- test.ipynb +104 -0
enhanced_notebook.ipynb
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# Data Science Analysis Notebook\n",
|
10 |
+
"\n",
|
11 |
+
"This notebook contains some example Python code for data analysis."
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "markdown",
|
16 |
+
"id": 9,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"# Create a function to summarize the code.\n"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "markdown",
|
25 |
+
"id": 8,
|
26 |
+
"metadata": {},
|
27 |
+
"outputs": [],
|
28 |
+
"source": [
|
29 |
+
"At first, we will start by importing the pandas and numpy modules.\n",
|
30 |
+
" Then we will use the seaborn library.\n",
|
31 |
+
" Next step is to set the style of the visualization.\n"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"execution_count": null,
|
37 |
+
"id": 2,
|
38 |
+
"metadata": {},
|
39 |
+
"outputs": [],
|
40 |
+
"source": [
|
41 |
+
"# Import libraries\n",
|
42 |
+
"import pandas as pd\n",
|
43 |
+
"import numpy as np\n",
|
44 |
+
"import matplotlib.pyplot as plt\n",
|
45 |
+
"import seaborn as sns\n",
|
46 |
+
"\n",
|
47 |
+
"# Set visualization style\n",
|
48 |
+
"sns.set(style='whitegrid')\n",
|
49 |
+
"%matplotlib inline"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "markdown",
|
54 |
+
"id": 11,
|
55 |
+
"metadata": {},
|
56 |
+
"outputs": [],
|
57 |
+
"source": [
|
58 |
+
"# Create a function summarize and load the dataset.\n"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "markdown",
|
63 |
+
"id": 10,
|
64 |
+
"metadata": {},
|
65 |
+
"outputs": [],
|
66 |
+
"source": [
|
67 |
+
"To Load the dataset\n",
|
68 |
+
" To display the basic information, use the print statement in the function.\n",
|
69 |
+
" To print the dataset shape and head method.\n",
|
70 |
+
"\n",
|
71 |
+
" Create a new dataframe with the shape of the dataframe and the head method"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"cell_type": "code",
|
76 |
+
"execution_count": null,
|
77 |
+
"id": 3,
|
78 |
+
"metadata": {},
|
79 |
+
"outputs": [],
|
80 |
+
"source": [
|
81 |
+
"# Load the dataset\n",
|
82 |
+
"df = pd.read_csv('housing_data.csv')\n",
|
83 |
+
"\n",
|
84 |
+
"# Display basic information\n",
|
85 |
+
"print(f\"Dataset shape: {df.shape}\")\n",
|
86 |
+
"df.head()"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "markdown",
|
91 |
+
"id": 13,
|
92 |
+
"metadata": {},
|
93 |
+
"outputs": [],
|
94 |
+
"source": [
|
95 |
+
"# Create a function summarize to perform the data cleaning.\n"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "markdown",
|
100 |
+
"id": 12,
|
101 |
+
"metadata": {},
|
102 |
+
"outputs": [],
|
103 |
+
"source": [
|
104 |
+
"In the for loop we iterate through the dataframe and fill missing values with median.\n",
|
105 |
+
" For each column in the dataframe, we check if the column is float64 or int64 type. If it is then we use the mode() function"
|
106 |
+
]
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"cell_type": "code",
|
110 |
+
"execution_count": null,
|
111 |
+
"id": 4,
|
112 |
+
"metadata": {},
|
113 |
+
"outputs": [],
|
114 |
+
"source": [
|
115 |
+
"# Perform data cleaning\n",
|
116 |
+
"# Fill missing values with median\n",
|
117 |
+
"for column in df.columns:\n",
|
118 |
+
" if df[column].dtype in ['float64', 'int64']:\n",
|
119 |
+
" df[column].fillna(df[column].median(), inplace=True)\n",
|
120 |
+
" else:\n",
|
121 |
+
" df[column].fillna(df[column].mode()[0], inplace=True)\n",
|
122 |
+
"\n",
|
123 |
+
"# Check for remaining missing values\n",
|
124 |
+
"print(\"Missing values after cleaning:\")\n",
|
125 |
+
"print(df.isnull().sum())"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "markdown",
|
130 |
+
"id": 15,
|
131 |
+
"metadata": {},
|
132 |
+
"outputs": [],
|
133 |
+
"source": [
|
134 |
+
"# Create a function to summarize the data.\n"
|
135 |
+
]
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"cell_type": "markdown",
|
139 |
+
"id": 14,
|
140 |
+
"metadata": {},
|
141 |
+
"outputs": [],
|
142 |
+
"source": [
|
143 |
+
"For each column in the dataframe, create a list of numeric columns.\n",
|
144 |
+
" Then create a correlation matrix.\n",
|
145 |
+
" Next step is to create a function that takes in a dataframe and returns the correlation matrix as an argument."
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": null,
|
151 |
+
"id": 5,
|
152 |
+
"metadata": {},
|
153 |
+
"outputs": [],
|
154 |
+
"source": [
|
155 |
+
"# Exploratory data analysis\n",
|
156 |
+
"# Create correlation matrix\n",
|
157 |
+
"numeric_columns = df.select_dtypes(include=['float64', 'int64']).columns\n",
|
158 |
+
"correlation_matrix = df[numeric_columns].corr()\n",
|
159 |
+
"\n",
|
160 |
+
"# Plot heatmap\n",
|
161 |
+
"plt.figure(figsize=(12, 10))\n",
|
162 |
+
"sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5)\n",
|
163 |
+
"plt.title('Correlation Matrix of Numeric Features', fontsize=18)\n",
|
164 |
+
"plt.xticks(rotation=45, ha='right')\n",
|
165 |
+
"plt.tight_layout()\n",
|
166 |
+
"plt.show()"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "markdown",
|
171 |
+
"id": 17,
|
172 |
+
"metadata": {},
|
173 |
+
"outputs": [],
|
174 |
+
"source": [
|
175 |
+
"# Create a variable called bedrooms_ratio and rooms_per_household.\n"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "markdown",
|
180 |
+
"id": 16,
|
181 |
+
"metadata": {},
|
182 |
+
"outputs": [],
|
183 |
+
"source": [
|
184 |
+
"If 'bedrooms' in the column and total_rooms is the column then create a new feature and scale it.\n"
|
185 |
+
]
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"cell_type": "code",
|
189 |
+
"execution_count": null,
|
190 |
+
"id": 6,
|
191 |
+
"metadata": {},
|
192 |
+
"outputs": [],
|
193 |
+
"source": [
|
194 |
+
"# Feature engineering\n",
|
195 |
+
"# Create new features\n",
|
196 |
+
"if 'bedrooms' in df.columns and 'total_rooms' in df.columns:\n",
|
197 |
+
" df['bedrooms_ratio'] = df['bedrooms'] / df['total_rooms']\n",
|
198 |
+
"\n",
|
199 |
+
"if 'total_rooms' in df.columns and 'households' in df.columns:\n",
|
200 |
+
" df['rooms_per_household'] = df['total_rooms'] / df['households']\n",
|
201 |
+
"\n",
|
202 |
+
"# Scale numeric features\n",
|
203 |
+
"from sklearn.preprocessing import StandardScaler\n",
|
204 |
+
"scaler = StandardScaler()\n",
|
205 |
+
"df[numeric_columns] = scaler.fit_transform(df[numeric_columns])\n",
|
206 |
+
"\n",
|
207 |
+
"# Display transformed data\n",
|
208 |
+
"df.head()"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "markdown",
|
213 |
+
"id": 19,
|
214 |
+
"metadata": {},
|
215 |
+
"outputs": [],
|
216 |
+
"source": [
|
217 |
+
"# Create a simple prediction model\n"
|
218 |
+
]
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"cell_type": "markdown",
|
222 |
+
"id": 18,
|
223 |
+
"metadata": {},
|
224 |
+
"outputs": [],
|
225 |
+
"source": [
|
226 |
+
"This function will build a model that can be used to train and evaluate the model.\n",
|
227 |
+
" Next step is to split the dataframe into training and test data and predict the median_house_value column using the train_test_split function."
|
228 |
+
]
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"cell_type": "code",
|
232 |
+
"execution_count": null,
|
233 |
+
"id": 7,
|
234 |
+
"metadata": {},
|
235 |
+
"outputs": [],
|
236 |
+
"source": [
|
237 |
+
"# Build a simple prediction model\n",
|
238 |
+
"from sklearn.model_selection import train_test_split\n",
|
239 |
+
"from sklearn.linear_model import LinearRegression\n",
|
240 |
+
"from sklearn.metrics import mean_squared_error, r2_score\n",
|
241 |
+
"\n",
|
242 |
+
"# Assume we're predicting median_house_value\n",
|
243 |
+
"if 'median_house_value' in df.columns:\n",
|
244 |
+
" # Prepare features and target\n",
|
245 |
+
" X = df.drop('median_house_value', axis=1)\n",
|
246 |
+
" y = df['median_house_value']\n",
|
247 |
+
" \n",
|
248 |
+
" # Split the data\n",
|
249 |
+
" X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
|
250 |
+
" \n",
|
251 |
+
" # Train the model\n",
|
252 |
+
" model = LinearRegression()\n",
|
253 |
+
" model.fit(X_train, y_train)\n",
|
254 |
+
" \n",
|
255 |
+
" # Make predictions\n",
|
256 |
+
" y_pred = model.predict(X_test)\n",
|
257 |
+
" \n",
|
258 |
+
" # Evaluate the model\n",
|
259 |
+
" mse = mean_squared_error(y_test, y_pred)\n",
|
260 |
+
" r2 = r2_score(y_test, y_pred)\n",
|
261 |
+
" \n",
|
262 |
+
" print(f\"Mean Squared Error: {mse:.2f}\")\n",
|
263 |
+
" print(f\"R² Score: {r2:.2f}\")\n",
|
264 |
+
" \n",
|
265 |
+
" # Plot actual vs predicted values\n",
|
266 |
+
" plt.figure(figsize=(10, 6))\n",
|
267 |
+
" plt.scatter(y_test, y_pred, alpha=0.5)\n",
|
268 |
+
" plt.plot([y.min(), y.max()], [y.min(), y.max()], 'r--')\n",
|
269 |
+
" plt.xlabel('Actual Values')\n",
|
270 |
+
" plt.ylabel('Predicted Values')\n",
|
271 |
+
" plt.title('Actual vs Predicted Values')\n",
|
272 |
+
" plt.tight_layout()\n",
|
273 |
+
" plt.show()"
|
274 |
+
]
|
275 |
+
}
|
276 |
+
],
|
277 |
+
"metadata": {
|
278 |
+
"kernelspec": {
|
279 |
+
"display_name": "Python 3",
|
280 |
+
"language": "python",
|
281 |
+
"name": "python3"
|
282 |
+
},
|
283 |
+
"language_info": {
|
284 |
+
"codemirror_mode": {
|
285 |
+
"name": "ipython",
|
286 |
+
"version": 3
|
287 |
+
},
|
288 |
+
"file_extension": ".py",
|
289 |
+
"mimetype": "text/x-python",
|
290 |
+
"name": "python",
|
291 |
+
"nbconvert_exporter": "python",
|
292 |
+
"pygments_lexer": "ipython3",
|
293 |
+
"version": "3.8.10"
|
294 |
+
}
|
295 |
+
},
|
296 |
+
"nbformat": 4,
|
297 |
+
"nbformat_minor": 5
|
298 |
+
}
|
notebook_enhancer.py
CHANGED
@@ -8,42 +8,52 @@ from transformers import (
|
|
8 |
AutoTokenizer,
|
9 |
AutoConfig,
|
10 |
pipeline,
|
11 |
-
SummarizationPipeline,
|
12 |
)
|
13 |
import re
|
|
|
14 |
|
15 |
-
|
|
|
16 |
|
17 |
|
18 |
class NotebookEnhancer:
|
19 |
def __init__(self):
|
20 |
-
|
21 |
-
self.
|
22 |
-
self.
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
"summarization",
|
26 |
-
model=
|
27 |
-
config=
|
28 |
-
tokenizer=self.
|
29 |
)
|
|
|
30 |
self.nlp = spacy.load("en_core_web_sm")
|
31 |
|
32 |
-
def generate_title(self,
|
33 |
"""Generate a concise title for a code cell"""
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
47 |
|
48 |
def _count_num_words(self, code):
|
49 |
words = code.split(" ")
|
@@ -51,23 +61,16 @@ class NotebookEnhancer:
|
|
51 |
|
52 |
def generate_summary(self, code):
|
53 |
"""Generate a detailed summary for a code cell"""
|
54 |
-
|
55 |
-
print("Code", code)
|
56 |
-
result = self.pipeline(code, min_length=5, max_length=30)
|
57 |
-
print(result)
|
58 |
summary = result[0]["summary_text"].strip()
|
59 |
-
summary = self._postprocess_summary(summary)
|
60 |
-
|
61 |
-
# print(self._is_valid_sentence_nlp(summary))
|
62 |
-
# summary = result[0]["summary_text"].strip()
|
63 |
-
return f"{summary}"
|
64 |
|
65 |
def enhance_notebook(self, notebook: nbformat.notebooknode.NotebookNode):
|
66 |
"""Add title and summary markdown cells before each code cell"""
|
67 |
# Create a new notebook
|
68 |
enhanced_notebook = nbformat.v4.new_notebook()
|
69 |
enhanced_notebook.metadata = notebook.metadata
|
70 |
-
print(len(notebook.cells))
|
71 |
# Process each cell
|
72 |
i = 0
|
73 |
id = len(notebook.cells) + 1
|
@@ -76,14 +79,11 @@ class NotebookEnhancer:
|
|
76 |
# For code cells, add title and summary markdown cells
|
77 |
if cell.cell_type == "code" and cell.source.strip():
|
78 |
# Generate summary
|
79 |
-
summary = self.generate_summary(cell.source)
|
80 |
summary_cell = nbformat.v4.new_markdown_cell(summary)
|
81 |
summary_cell.outputs = []
|
82 |
summary_cell.id = id
|
83 |
id += 1
|
84 |
-
|
85 |
-
# Generate title based on the summary cell
|
86 |
-
title = self.generate_title(summary)
|
87 |
title_cell = nbformat.v4.new_markdown_cell(title)
|
88 |
title_cell.outputs = []
|
89 |
title_cell.id = id
|
@@ -91,7 +91,6 @@ class NotebookEnhancer:
|
|
91 |
|
92 |
enhanced_notebook.cells.append(title_cell)
|
93 |
enhanced_notebook.cells.append(summary_cell)
|
94 |
-
|
95 |
# Add the original cell
|
96 |
cell.outputs = []
|
97 |
enhanced_notebook.cells.append(cell)
|
@@ -111,14 +110,16 @@ class NotebookEnhancer:
|
|
111 |
def _postprocess_summary(self, summary: str):
|
112 |
doc = self.nlp(summary)
|
113 |
sentences = list(doc.sents)
|
114 |
-
# ignore the first sentence
|
115 |
-
sentences = sentences[1:]
|
116 |
# remove the trailing list enumeration
|
117 |
postprocessed_sentences = []
|
118 |
for sentence in sentences:
|
119 |
if self.is_valid(sentence):
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
122 |
|
123 |
|
124 |
def process_notebook(file_path):
|
@@ -129,7 +130,6 @@ def process_notebook(file_path):
|
|
129 |
nb = nbformat.read(f, as_version=4)
|
130 |
# Process the notebook
|
131 |
enhanced_notebook = enhancer.enhance_notebook(nb)
|
132 |
-
print(enhanced_notebook)
|
133 |
enhanced_notebook_str = nbformat.writes(enhanced_notebook, version=4)
|
134 |
# Save to temp file
|
135 |
output_path = "enhanced_notebook.ipynb"
|
@@ -168,7 +168,7 @@ def build_gradio_interface():
|
|
168 |
|
169 |
# This will be the entry point when running the script
|
170 |
if __name__ == "__main__":
|
171 |
-
file_input = "my_notebook.json"
|
172 |
-
test = process_notebook(file_input)
|
173 |
-
|
174 |
-
|
|
|
8 |
AutoTokenizer,
|
9 |
AutoConfig,
|
10 |
pipeline,
|
|
|
11 |
)
|
12 |
import re
|
13 |
+
import nltk
|
14 |
|
15 |
+
PYTHON_CODE_MODEL = "sagard21/python-code-explainer"
|
16 |
+
TITLE_SUMMARIZE_MODEL = "fabiochiu/t5-small-medium-title-generation"
|
17 |
|
18 |
|
19 |
class NotebookEnhancer:
|
20 |
def __init__(self):
|
21 |
+
# models + tokenizer for generating titles from code summaries
|
22 |
+
self.title_tokenizer = AutoTokenizer.from_pretrained(TITLE_SUMMARIZE_MODEL)
|
23 |
+
self.title_summarization_model = AutoModelForSeq2SeqLM.from_pretrained(
|
24 |
+
TITLE_SUMMARIZE_MODEL
|
25 |
+
)
|
26 |
+
|
27 |
+
# models + tokenizer for generating summaries from Python code
|
28 |
+
self.python_model = AutoModelForSeq2SeqLM.from_pretrained(PYTHON_CODE_MODEL)
|
29 |
+
self.python_tokenizer = AutoTokenizer.from_pretrained(
|
30 |
+
PYTHON_CODE_MODEL, padding=True
|
31 |
+
)
|
32 |
+
self.python_pipeline = pipeline(
|
33 |
"summarization",
|
34 |
+
model=PYTHON_CODE_MODEL,
|
35 |
+
config=AutoConfig.from_pretrained(PYTHON_CODE_MODEL),
|
36 |
+
tokenizer=self.python_tokenizer,
|
37 |
)
|
38 |
+
# initiate the language model
|
39 |
self.nlp = spacy.load("en_core_web_sm")
|
40 |
|
41 |
+
def generate_title(self, summary: str):
|
42 |
"""Generate a concise title for a code cell"""
|
43 |
+
inputs = self.title_tokenizer.batch_encode_plus(
|
44 |
+
["summarize: " + summary],
|
45 |
+
max_length=1024,
|
46 |
+
return_tensors="pt",
|
47 |
+
padding=True,
|
48 |
+
) # Batch size 1
|
49 |
+
output = self.title_summarization_model.generate(
|
50 |
+
**inputs, num_beams=8, do_sample=True, min_length=10, max_length=10
|
51 |
+
)
|
52 |
+
decoded_output = self.title_tokenizer.batch_decode(
|
53 |
+
output, skip_special_tokens=True
|
54 |
+
)[0]
|
55 |
+
predicted_title = nltk.sent_tokenize(decoded_output.strip())[0]
|
56 |
+
return f"# {predicted_title}"
|
57 |
|
58 |
def _count_num_words(self, code):
|
59 |
words = code.split(" ")
|
|
|
61 |
|
62 |
def generate_summary(self, code):
|
63 |
"""Generate a detailed summary for a code cell"""
|
64 |
+
result = self.python_pipeline(code, min_length=5, max_length=64)
|
|
|
|
|
|
|
65 |
summary = result[0]["summary_text"].strip()
|
66 |
+
title, summary = self._postprocess_summary(summary)
|
67 |
+
return f"# {title}", f"{summary}"
|
|
|
|
|
|
|
68 |
|
69 |
def enhance_notebook(self, notebook: nbformat.notebooknode.NotebookNode):
|
70 |
"""Add title and summary markdown cells before each code cell"""
|
71 |
# Create a new notebook
|
72 |
enhanced_notebook = nbformat.v4.new_notebook()
|
73 |
enhanced_notebook.metadata = notebook.metadata
|
|
|
74 |
# Process each cell
|
75 |
i = 0
|
76 |
id = len(notebook.cells) + 1
|
|
|
79 |
# For code cells, add title and summary markdown cells
|
80 |
if cell.cell_type == "code" and cell.source.strip():
|
81 |
# Generate summary
|
82 |
+
title, summary = self.generate_summary(cell.source)
|
83 |
summary_cell = nbformat.v4.new_markdown_cell(summary)
|
84 |
summary_cell.outputs = []
|
85 |
summary_cell.id = id
|
86 |
id += 1
|
|
|
|
|
|
|
87 |
title_cell = nbformat.v4.new_markdown_cell(title)
|
88 |
title_cell.outputs = []
|
89 |
title_cell.id = id
|
|
|
91 |
|
92 |
enhanced_notebook.cells.append(title_cell)
|
93 |
enhanced_notebook.cells.append(summary_cell)
|
|
|
94 |
# Add the original cell
|
95 |
cell.outputs = []
|
96 |
enhanced_notebook.cells.append(cell)
|
|
|
110 |
def _postprocess_summary(self, summary: str):
|
111 |
doc = self.nlp(summary)
|
112 |
sentences = list(doc.sents)
|
|
|
|
|
113 |
# remove the trailing list enumeration
|
114 |
postprocessed_sentences = []
|
115 |
for sentence in sentences:
|
116 |
if self.is_valid(sentence):
|
117 |
+
sentence_text = sentence.text
|
118 |
+
sentence_text = re.sub("[0-9]+\.", "", sentence_text)
|
119 |
+
postprocessed_sentences.append(sentence_text)
|
120 |
+
title = postprocessed_sentences[0]
|
121 |
+
summary = postprocessed_sentences[1:]
|
122 |
+
return title, " ".join(summary)
|
123 |
|
124 |
|
125 |
def process_notebook(file_path):
|
|
|
130 |
nb = nbformat.read(f, as_version=4)
|
131 |
# Process the notebook
|
132 |
enhanced_notebook = enhancer.enhance_notebook(nb)
|
|
|
133 |
enhanced_notebook_str = nbformat.writes(enhanced_notebook, version=4)
|
134 |
# Save to temp file
|
135 |
output_path = "enhanced_notebook.ipynb"
|
|
|
168 |
|
169 |
# This will be the entry point when running the script
|
170 |
if __name__ == "__main__":
|
171 |
+
# file_input = "my_notebook.json"
|
172 |
+
# test = process_notebook(file_input)
|
173 |
+
demo = build_gradio_interface()
|
174 |
+
demo.launch()
|
test.ipynb
CHANGED
@@ -124,6 +124,110 @@
|
|
124 |
" print(word, word.is_alpha, word.pos_)\n"
|
125 |
]
|
126 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
{
|
128 |
"cell_type": "code",
|
129 |
"execution_count": null,
|
|
|
124 |
" print(word, word.is_alpha, word.pos_)\n"
|
125 |
]
|
126 |
},
|
127 |
+
{
|
128 |
+
"cell_type": "code",
|
129 |
+
"execution_count": 50,
|
130 |
+
"metadata": {},
|
131 |
+
"outputs": [
|
132 |
+
{
|
133 |
+
"name": "stderr",
|
134 |
+
"output_type": "stream",
|
135 |
+
"text": [
|
136 |
+
"Truncation was not explicitly activated but `max_length` is provided a specific value, please use `truncation=True` to explicitly truncate examples to max length. Defaulting to 'longest_first' truncation strategy. If you encode pairs of sequences (GLUE-style) with the tokenizer you can select this strategy more precisely by providing a specific strategy to `truncation`.\n"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"name": "stdout",
|
141 |
+
"output_type": "stream",
|
142 |
+
"text": [
|
143 |
+
"['this function will build a model that can be used to train and']\n"
|
144 |
+
]
|
145 |
+
}
|
146 |
+
],
|
147 |
+
"source": [
|
148 |
+
"from transformers import T5Tokenizer, T5ForConditionalGeneration\n",
|
149 |
+
"example_text = \"This function will build a model that can be used to train and evaluate the model.\"\n",
|
150 |
+
"tokenizer = T5Tokenizer.from_pretrained('t5-small')\n",
|
151 |
+
"model = T5ForConditionalGeneration.from_pretrained('t5-small')\n",
|
152 |
+
"inputs = tokenizer.batch_encode_plus([\"summarize: \" + example_text], max_length=1024, return_tensors=\"pt\", pad_to_max_length=True) # Batch size 1\n",
|
153 |
+
"outputs = model.generate(inputs['input_ids'], num_beams=2, max_length=15, early_stopping=True)\n",
|
154 |
+
"\n",
|
155 |
+
"print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in outputs])"
|
156 |
+
]
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"cell_type": "code",
|
160 |
+
"execution_count": 59,
|
161 |
+
"metadata": {},
|
162 |
+
"outputs": [
|
163 |
+
{
|
164 |
+
"name": "stderr",
|
165 |
+
"output_type": "stream",
|
166 |
+
"text": [
|
167 |
+
"Device set to use mps:0\n"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"data": {
|
172 |
+
"text/plain": [
|
173 |
+
"[{'summary_text': 'An apple a day, keeps the'}]"
|
174 |
+
]
|
175 |
+
},
|
176 |
+
"execution_count": 59,
|
177 |
+
"metadata": {},
|
178 |
+
"output_type": "execute_result"
|
179 |
+
}
|
180 |
+
],
|
181 |
+
"source": [
|
182 |
+
"from transformers import pipeline\n",
|
183 |
+
"summarizer = pipeline(\"summarization\", model=\"facebook/bart-large-cnn\", tokenizer=\"facebook/bart-large-cnn\")\n",
|
184 |
+
"summarizer(\"An apple a day, keeps the doctor away\", min_length=5, max_length=10)"
|
185 |
+
]
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"cell_type": "code",
|
189 |
+
"execution_count": 76,
|
190 |
+
"metadata": {},
|
191 |
+
"outputs": [
|
192 |
+
{
|
193 |
+
"name": "stderr",
|
194 |
+
"output_type": "stream",
|
195 |
+
"text": [
|
196 |
+
"[nltk_data] Downloading package punkt to /Users/irma/nltk_data...\n",
|
197 |
+
"[nltk_data] Package punkt is already up-to-date!\n"
|
198 |
+
]
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"name": "stdout",
|
202 |
+
"output_type": "stream",
|
203 |
+
"text": [
|
204 |
+
"This function will build a model that can be used to train and evaluate the model.\n",
|
205 |
+
"27\n"
|
206 |
+
]
|
207 |
+
}
|
208 |
+
],
|
209 |
+
"source": [
|
210 |
+
"from transformers import AutoTokenizer, AutoModelForSeq2SeqLM\n",
|
211 |
+
"import nltk\n",
|
212 |
+
"nltk.download('punkt')\n",
|
213 |
+
"\n",
|
214 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"fabiochiu/t5-small-medium-title-generation\")\n",
|
215 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(\"fabiochiu/t5-small-medium-title-generation\")\n",
|
216 |
+
"\n",
|
217 |
+
"text = \"This function will build a model that can be used to train and evaluate the model.\"\n",
|
218 |
+
"\n",
|
219 |
+
"inputs = [\"summarize: \" + text]\n",
|
220 |
+
"\n",
|
221 |
+
"inputs = tokenizer(inputs, max_length=1024, truncation=True, return_tensors=\"pt\")\n",
|
222 |
+
"output = model.generate(**inputs, num_beams=4, do_sample=True, min_length=10, max_length=len(text) // 3)\n",
|
223 |
+
"decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0]\n",
|
224 |
+
"predicted_title = nltk.sent_tokenize(decoded_output.strip())[0]\n",
|
225 |
+
"\n",
|
226 |
+
"print(predicted_title)\n",
|
227 |
+
"# Conversational AI: The Future of Customer Service\n",
|
228 |
+
"print(len(text) // 3)"
|
229 |
+
]
|
230 |
+
},
|
231 |
{
|
232 |
"cell_type": "code",
|
233 |
"execution_count": null,
|