Spaces:
Running
Running
""" | |
from fastapi import FastAPI | |
from fastapi.responses import RedirectResponse | |
import gradio as gr | |
from transformers import pipeline, ViltProcessor, ViltForQuestionAnswering, AutoTokenizer, AutoModelForCausalLM | |
from PIL import Image | |
import torch | |
import fitz # PyMuPDF for PDF | |
app = FastAPI() | |
# ========== Document QA Setup ========== | |
doc_tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0") | |
doc_model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0") | |
def read_pdf(file): | |
doc = fitz.open(stream=file.read(), filetype="pdf") | |
text = "" | |
for page in doc: | |
text += page.get_text() | |
return text | |
def answer_question_from_doc(file, question): | |
if file is None or not question.strip(): | |
return "Please upload a document and ask a question." | |
text = read_pdf(file) | |
prompt = f"Context: {text}\nQuestion: {question}\nAnswer:" | |
inputs = doc_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048) | |
with torch.no_grad(): | |
outputs = doc_model.generate(**inputs, max_new_tokens=100) | |
answer = doc_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return answer.split("Answer:")[-1].strip() | |
# ========== Image QA Setup ========== | |
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") | |
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa") | |
def answer_question_from_image(image, question): | |
if image is None or not question.strip(): | |
return "Please upload an image and ask a question." | |
inputs = vqa_processor(image, question, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = vqa_model(**inputs) | |
predicted_id = outputs.logits.argmax(-1).item() | |
return vqa_model.config.id2label[predicted_id] | |
# ========== Gradio Interfaces ========== | |
doc_interface = gr.Interface( | |
fn=answer_question_from_doc, | |
inputs=[gr.File(label="Upload Document (PDF)"), gr.Textbox(label="Ask a Question")], | |
outputs="text", | |
title="Document Question Answering" | |
) | |
img_interface = gr.Interface( | |
fn=answer_question_from_image, | |
inputs=[gr.Image(label="Upload Image"), gr.Textbox(label="Ask a Question")], | |
outputs="text", | |
title="Image Question Answering" | |
) | |
# ========== Combine and Mount ========== | |
demo = gr.TabbedInterface([doc_interface, img_interface], ["Document QA", "Image QA"]) | |
app = gr.mount_gradio_app(app, demo, path="/") | |
@app.get("/") | |
def root(): | |
return RedirectResponse(url="/") | |
""" | |
from fastapi import FastAPI | |
from fastapi.responses import RedirectResponse | |
import gradio as gr | |
import pytesseract | |
from PIL import Image | |
import fitz # PyMuPDF | |
import pdfplumber | |
import easyocr | |
import docx | |
import openpyxl | |
from pptx import Presentation | |
from transformers import pipeline | |
from deep_translator import GoogleTranslator | |
import json | |
import os | |
app = FastAPI() | |
qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad") | |
reader = easyocr.Reader(['en']) | |
# Utility functions | |
def extract_text_from_pdf(pdf_file): | |
with pdfplumber.open(pdf_file) as pdf: | |
return "\n".join([page.extract_text() for page in pdf.pages if page.extract_text()]) | |
def extract_text_from_docx(docx_file): | |
doc = docx.Document(docx_file) | |
return "\n".join([para.text for para in doc.paragraphs]) | |
def extract_text_from_pptx(pptx_file): | |
prs = Presentation(pptx_file) | |
text = [] | |
for slide in prs.slides: | |
for shape in slide.shapes: | |
if hasattr(shape, "text"): | |
text.append(shape.text) | |
return "\n".join(text) | |
def extract_text_from_xlsx(xlsx_file): | |
wb = openpyxl.load_workbook(xlsx_file) | |
text = [] | |
for sheet in wb.worksheets: | |
for row in sheet.iter_rows(): | |
text.extend([str(cell.value) for cell in row if cell.value is not None]) | |
return "\n".join(text) | |
def extract_text(file): | |
ext = os.path.splitext(file.name)[1].lower() | |
if ext == ".pdf": | |
return extract_text_from_pdf(file) | |
elif ext == ".docx": | |
return extract_text_from_docx(file) | |
elif ext == ".pptx": | |
return extract_text_from_pptx(file) | |
elif ext == ".xlsx": | |
return extract_text_from_xlsx(file) | |
else: | |
return "Unsupported file type" | |
def answer_question_from_doc(file, question, translate_to="en"): | |
context = extract_text(file) | |
result = qa_pipeline(question=question, context=context) | |
translated = GoogleTranslator(source='auto', target=translate_to).translate(result["answer"]) | |
return { | |
"answer": translated, | |
"score": result["score"], | |
"original": result["answer"] | |
} | |
def answer_question_from_image(image, question, translate_to="en"): | |
img_text = pytesseract.image_to_string(image) | |
if not img_text.strip(): | |
img_text = "\n".join([line[1] for line in reader.readtext(image)]) | |
result = qa_pipeline(question=question, context=img_text) | |
translated = GoogleTranslator(source='auto', target=translate_to).translate(result["answer"]) | |
return { | |
"answer": translated, | |
"score": result["score"], | |
"original": result["answer"] | |
} | |
# Gradio Interfaces | |
doc_interface = gr.Interface( | |
fn=answer_question_from_doc, | |
inputs=[ | |
gr.File(label="Upload Document (PDF, DOCX, PPTX, XLSX)"), | |
gr.Textbox(label="Ask a Question"), | |
gr.Textbox(label="Translate Answer To (e.g., en, fr, ar)", value="en") | |
], | |
outputs=[ | |
gr.Textbox(label="Translated Answer"), | |
gr.Number(label="Confidence Score"), | |
gr.Textbox(label="Original Answer") | |
], | |
title="๐ Document QA + Translation + Export" | |
) | |
img_interface = gr.Interface( | |
fn=answer_question_from_image, | |
inputs=[ | |
gr.Image(label="Upload Image"), | |
gr.Textbox(label="Ask a Question"), | |
gr.Textbox(label="Translate Answer To (e.g., en, fr, ar)", value="en") | |
], | |
outputs=[ | |
gr.Textbox(label="Translated Answer"), | |
gr.Number(label="Confidence Score"), | |
gr.Textbox(label="Original Answer") | |
], | |
title="๐ผ๏ธ Image QA + OCR + Translation + Export" | |
) | |
# Combine interfaces | |
demo = gr.TabbedInterface([doc_interface, img_interface], ["Document QA", "Image QA"]) | |
app = gr.mount_gradio_app(app, demo, path="/") | |
def root(): | |
return RedirectResponse(url="/") | |