File size: 6,350 Bytes
a768964
935d12d
9325c19
df1ed5e
9325c19
b36b2d0
 
935d12d
4f113b7
b36b2d0
935d12d
 
 
b36b2d0
 
 
935d12d
b36b2d0
 
 
 
 
 
 
 
 
 
 
 
 
4f113b7
b36b2d0
 
 
9325c19
b36b2d0
 
 
9325c19
b36b2d0
 
 
 
 
 
 
 
9325c19
b36b2d0
df1ed5e
b36b2d0
 
4f113b7
 
9325c19
 
b36b2d0
 
 
 
 
 
df1ed5e
b36b2d0
 
df1ed5e
7a6dca4
04626e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df1ed5e
b36b2d0
df1ed5e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

"""
from fastapi import FastAPI
from fastapi.responses import RedirectResponse
import gradio as gr

from transformers import pipeline, ViltProcessor, ViltForQuestionAnswering, AutoTokenizer, AutoModelForCausalLM
from PIL import Image
import torch
import fitz  # PyMuPDF for PDF

app = FastAPI()

# ========== Document QA Setup ==========
doc_tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
doc_model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")

def read_pdf(file):
    doc = fitz.open(stream=file.read(), filetype="pdf")
    text = ""
    for page in doc:
        text += page.get_text()
    return text

def answer_question_from_doc(file, question):
    if file is None or not question.strip():
        return "Please upload a document and ask a question."
    text = read_pdf(file)
    prompt = f"Context: {text}\nQuestion: {question}\nAnswer:"
    inputs = doc_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
    with torch.no_grad():
        outputs = doc_model.generate(**inputs, max_new_tokens=100)
    answer = doc_tokenizer.decode(outputs[0], skip_special_tokens=True)
    return answer.split("Answer:")[-1].strip()

# ========== Image QA Setup ==========
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")

def answer_question_from_image(image, question):
    if image is None or not question.strip():
        return "Please upload an image and ask a question."
    inputs = vqa_processor(image, question, return_tensors="pt")
    with torch.no_grad():
        outputs = vqa_model(**inputs)
    predicted_id = outputs.logits.argmax(-1).item()
    return vqa_model.config.id2label[predicted_id]

# ========== Gradio Interfaces ==========
doc_interface = gr.Interface(
    fn=answer_question_from_doc,
    inputs=[gr.File(label="Upload Document (PDF)"), gr.Textbox(label="Ask a Question")],
    outputs="text",
    title="Document Question Answering"
)

img_interface = gr.Interface(
    fn=answer_question_from_image,
    inputs=[gr.Image(label="Upload Image"), gr.Textbox(label="Ask a Question")],
    outputs="text",
    title="Image Question Answering"
)

# ========== Combine and Mount ==========
demo = gr.TabbedInterface([doc_interface, img_interface], ["Document QA", "Image QA"])
app = gr.mount_gradio_app(app, demo, path="/")

@app.get("/")
def root():
    return RedirectResponse(url="/")
"""
from fastapi import FastAPI
from fastapi.responses import RedirectResponse
import gradio as gr
import pytesseract
from PIL import Image
import fitz  # PyMuPDF
import pdfplumber
import easyocr
import docx
import openpyxl
from pptx import Presentation
from transformers import pipeline
from deep_translator import GoogleTranslator
import json
import os

app = FastAPI()

qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
reader = easyocr.Reader(['en'])

# Utility functions

def extract_text_from_pdf(pdf_file):
    with pdfplumber.open(pdf_file) as pdf:
        return "\n".join([page.extract_text() for page in pdf.pages if page.extract_text()])

def extract_text_from_docx(docx_file):
    doc = docx.Document(docx_file)
    return "\n".join([para.text for para in doc.paragraphs])

def extract_text_from_pptx(pptx_file):
    prs = Presentation(pptx_file)
    text = []
    for slide in prs.slides:
        for shape in slide.shapes:
            if hasattr(shape, "text"):
                text.append(shape.text)
    return "\n".join(text)

def extract_text_from_xlsx(xlsx_file):
    wb = openpyxl.load_workbook(xlsx_file)
    text = []
    for sheet in wb.worksheets:
        for row in sheet.iter_rows():
            text.extend([str(cell.value) for cell in row if cell.value is not None])
    return "\n".join(text)

def extract_text(file):
    ext = os.path.splitext(file.name)[1].lower()
    if ext == ".pdf":
        return extract_text_from_pdf(file)
    elif ext == ".docx":
        return extract_text_from_docx(file)
    elif ext == ".pptx":
        return extract_text_from_pptx(file)
    elif ext == ".xlsx":
        return extract_text_from_xlsx(file)
    else:
        return "Unsupported file type"

def answer_question_from_doc(file, question, translate_to="en"):
    context = extract_text(file)
    result = qa_pipeline(question=question, context=context)
    translated = GoogleTranslator(source='auto', target=translate_to).translate(result["answer"])
    return {
        "answer": translated,
        "score": result["score"],
        "original": result["answer"]
    }

def answer_question_from_image(image, question, translate_to="en"):
    img_text = pytesseract.image_to_string(image)
    if not img_text.strip():
        img_text = "\n".join([line[1] for line in reader.readtext(image)])
    result = qa_pipeline(question=question, context=img_text)
    translated = GoogleTranslator(source='auto', target=translate_to).translate(result["answer"])
    return {
        "answer": translated,
        "score": result["score"],
        "original": result["answer"]
    }

# Gradio Interfaces

doc_interface = gr.Interface(
    fn=answer_question_from_doc,
    inputs=[
        gr.File(label="Upload Document (PDF, DOCX, PPTX, XLSX)"),
        gr.Textbox(label="Ask a Question"),
        gr.Textbox(label="Translate Answer To (e.g., en, fr, ar)", value="en")
    ],
    outputs=[
        gr.Textbox(label="Translated Answer"),
        gr.Number(label="Confidence Score"),
        gr.Textbox(label="Original Answer")
    ],
    title="๐Ÿ“„ Document QA + Translation + Export"
)

img_interface = gr.Interface(
    fn=answer_question_from_image,
    inputs=[
        gr.Image(label="Upload Image"),
        gr.Textbox(label="Ask a Question"),
        gr.Textbox(label="Translate Answer To (e.g., en, fr, ar)", value="en")
    ],
    outputs=[
        gr.Textbox(label="Translated Answer"),
        gr.Number(label="Confidence Score"),
        gr.Textbox(label="Original Answer")
    ],
    title="๐Ÿ–ผ๏ธ Image QA + OCR + Translation + Export"
)

# Combine interfaces
demo = gr.TabbedInterface([doc_interface, img_interface], ["Document QA", "Image QA"])
app = gr.mount_gradio_app(app, demo, path="/")

@app.get("/")
def root():
    return RedirectResponse(url="/")