File size: 5,938 Bytes
7e5ddc3
2852c90
 
2be14bd
 
1be9899
65aa3e7
 
dbe3ba4
28de64c
a5ffabc
65aa3e7
0c9548a
8e24199
b1622cb
65aa3e7
2be14bd
 
65aa3e7
 
 
 
9a2af53
239c804
65aa3e7
 
 
 
 
 
 
 
 
 
 
 
28de64c
65aa3e7
 
 
 
8e24199
 
 
 
1be9899
65aa3e7
d2931fe
8e24199
d2931fe
8e24199
 
1be9899
c724805
 
d2931fe
 
 
2be14bd
1be9899
65aa3e7
8e24199
1be9899
65aa3e7
2852c90
d2931fe
8e24199
d2931fe
2be14bd
65aa3e7
8e24199
d2931fe
65aa3e7
d2931fe
8e24199
d2931fe
2be14bd
65aa3e7
 
 
 
 
 
 
 
 
 
 
 
 
 
8e24199
1be9899
65aa3e7
8e24199
 
 
 
d2931fe
8e24199
d2931fe
8e24199
65aa3e7
 
 
 
 
 
 
 
 
 
 
d2931fe
8e24199
 
 
2be14bd
65aa3e7
2be14bd
65aa3e7
2852c90
65aa3e7
2be14bd
65aa3e7
2be14bd
d2931fe
8e24199
2be14bd
d2931fe
7e5ddc3
 
d2931fe
65aa3e7
7e5ddc3
2852c90
2be14bd
1be9899
65aa3e7
 
 
 
 
 
 
 
 
 
6bf4ee9
1be9899
a5ffabc
 
d2931fe
a5ffabc
d2931fe
a5ffabc
 
7e5ddc3
 
1be9899
7e5ddc3
1be9899
7e5ddc3
 
65aa3e7
 
 
1be9899
65aa3e7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from fastapi import FastAPI, File, UploadFile
import fitz  # PyMuPDF for PDF parsing
from tika import parser  # Apache Tika for document parsing
import openpyxl
from pptx import Presentation
import torch
from torchvision import transforms
from torchvision.models.detection import fasterrcnn_resnet50_fpn
from PIL import Image
from transformers import pipeline
import gradio as gr
from fastapi.responses import RedirectResponse
import numpy as np
import easyocr

# Initialize FastAPI
app = FastAPI()

# Load AI Model for Question Answering (DeepSeek-V2-Chat)
from transformers import AutoModelForCausalLM, AutoTokenizer

# Preload Hugging Face model
print(f"πŸ”„ Loading models")

qa_pipeline =  pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device=-1)
# Load Pretrained Object Detection Model (Torchvision)
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
weights = FasterRCNN_ResNet50_FPN_Weights.DEFAULT
model = fasterrcnn_resnet50_fpn(weights=weights)
model.eval()
# Load Pretrained Object Detection Model (if needed)
model = fasterrcnn_resnet50_fpn(pretrained=True)
model.eval()

# Initialize OCR Model (Lazy Load)
reader = easyocr.Reader(["en"], gpu=True)

# Image Transformations
transform = transforms.Compose([
    transforms.ToTensor()
])

# Allowed File Extensions
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}

def validate_file_type(file):
    ext = file.name.split(".")[-1].lower()
    print(f"πŸ” Validating file type: {ext}")
    if ext not in ALLOWED_EXTENSIONS:
        return f"❌ Unsupported file format: {ext}"
    return None

# Function to truncate text to 450 tokens
def truncate_text(text, max_tokens=450):
    words = text.split()
    truncated = " ".join(words[:max_tokens])
    print(f"βœ‚οΈ Truncated text to {max_tokens} tokens.")
    return truncated

# Document Text Extraction Functions
def extract_text_from_pdf(pdf_file):
    try:
        print("πŸ“„ Extracting text from PDF...")
        doc = fitz.open(pdf_file)
        text = "\n".join([page.get_text("text") for page in doc])
        return text if text else "⚠️ No text found."
    except Exception as e:
        return f"❌ Error reading PDF: {str(e)}"

def extract_text_with_tika(file):
    try:
        print("πŸ“ Extracting text with Tika...")
        parsed = parser.from_buffer(file)
        return parsed.get("content", "⚠️ No text found.").strip()
    except Exception as e:
        return f"❌ Error reading document: {str(e)}"

def extract_text_from_pptx(pptx_file):
    try:
        print("πŸ“Š Extracting text from PPTX...")
        ppt = Presentation(pptx_file)
        text = []
        for slide in ppt.slides:
            for shape in slide.shapes:
                if hasattr(shape, "text"):
                    text.append(shape.text)
        return "\n".join(text) if text else "⚠️ No text found."
    except Exception as e:
        return f"❌ Error reading PPTX: {str(e)}"

def extract_text_from_excel(excel_file):
    try:
        print("πŸ“Š Extracting text from Excel...")
        wb = openpyxl.load_workbook(excel_file, read_only=True)
        text = []
        for sheet in wb.worksheets:
            for row in sheet.iter_rows(values_only=True):
                text.append(" ".join(map(str, row)))
        return "\n".join(text) if text else "⚠️ No text found."
    except Exception as e:
        return f"❌ Error reading Excel: {str(e)}"

def extract_text_from_image(image_file):
    print("πŸ–ΌοΈ Extracting text from image...")
    image = Image.open(image_file).convert("RGB")
    if np.array(image).std() < 10:  # Low contrast = likely empty
        return "⚠️ No meaningful content detected in the image."
    
    result = reader.readtext(np.array(image))
    return " ".join([res[1] for res in result]) if result else "⚠️ No text found."

# Function to answer questions based on document content
def answer_question_from_document(file, question):
    print("πŸ“‚ Processing document for QA...")
    validation_error = validate_file_type(file)
    if validation_error:
        return validation_error
    
    file_ext = file.name.split(".")[-1].lower()
    if file_ext == "pdf":
        text = extract_text_from_pdf(file)
    elif file_ext in ["docx", "pptx"]:
        text = extract_text_with_tika(file)
    elif file_ext == "xlsx":
        text = extract_text_from_excel(file)
    else:
        return "❌ Unsupported file format!"
    
    if not text:
        return "⚠️ No text extracted from the document."
    
    truncated_text = truncate_text(text)
    print("πŸ€– Generating response...")
    response = qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
    
    return response[0]["generated_text"]

def answer_question_from_image(image, question):
    print("πŸ–ΌοΈ Processing image for QA...")
    image_text = extract_text_from_image(image)
    if not image_text:
        return "⚠️ No meaningful content detected in the image."
    
    truncated_text = truncate_text(image_text)
    print("πŸ€– Generating response...")
    response = qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
    
    return response[0]["generated_text"]

# Gradio UI for Document & Image QA
doc_interface = gr.Interface(
    fn=answer_question_from_document,
    inputs=[gr.File(label="πŸ“‚ Upload Document"), gr.Textbox(label="πŸ’¬ Ask a Question")],
    outputs="text",
    title="πŸ“„ AI Document Question Answering"
)

img_interface = gr.Interface(
    fn=answer_question_from_image,
    inputs=[gr.Image(label="πŸ–ΌοΈ Upload Image"), gr.Textbox(label="πŸ’¬ Ask a Question")],
    outputs="text",
    title="πŸ–ΌοΈ AI Image Question Answering"
)

# Mount Gradio Interfaces
demo = gr.TabbedInterface([doc_interface, img_interface], ["πŸ“„ Document QA", "πŸ–ΌοΈ Image QA"])
app = gr.mount_gradio_app(app, demo, path="/")

@app.get("/")
def home():
    return RedirectResponse(url="/")