iisadia's picture
Update app.py
8a0a253 verified
import streamlit as st
import requests
from fpdf import FPDF
import os
import time
from datetime import datetime
import groq
# Groq API key (replace with your key or use environment variable)
api_key = os.getenv("GROQ_API_KEY", "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")
# Initialize Groq client
groq_client = groq.Client(api_key=api_key)
# Function to call Groq API with rate limit handling
def call_groq_api(prompt):
try:
response = groq_client.chat.completions.create(
model="llama-3.3-70b-versatile", # Correct model name
messages=[
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content
except Exception as err:
st.error(f"Error: {err}")
return f"Error: {err}"
# Function to analyze a single requirement
def analyze_requirement(requirement):
# Detect requirement type
type_prompt = f"Classify the following requirement as Functional or Non-Functional:\n\n{requirement}\n\nType:"
req_type = call_groq_api(type_prompt)
# Identify stakeholders
stakeholders_prompt = f"Identify the stakeholders for the following requirement:\n\n{requirement}\n\nStakeholders:"
stakeholders = call_groq_api(stakeholders_prompt)
# Classify domain
domain_prompt = f"Classify the domain for the following requirement (e.g., Bank, Healthcare, etc.):\n\n{requirement}\n\nDomain:"
domain = call_groq_api(domain_prompt)
# Detect defects
defects_prompt = f"""Analyze the following requirement and identify ONLY MAJOR defects (e.g., Ambiguity, Incompleteness, etc.).
If the requirement is clear and complete, respond with 'No defects.'
Requirement: {requirement}
Defects:"""
defects = call_groq_api(defects_prompt)
# Rewrite requirement
rewritten_prompt = f"""Rewrite the following requirement in 1-2 sentences to address the defects:\n\n{requirement}\n\nRewritten:"""
rewritten = call_groq_api(rewritten_prompt).strip()
return {
"Requirement": requirement,
"Type": req_type,
"Stakeholders": stakeholders,
"Domain": domain,
"Defects": defects,
"Rewritten": rewritten
}
# Function to rewrite requirement concisely
def rewrite_requirement(requirement, defects):
if "no defects" in defects.lower():
return "No modification needed."
# If defects are found, generate a concise and clear rewritten requirement
prompt = f"""Rewrite the following requirement to address the defects listed below. Ensure the rewritten requirement is clear, concise, and free of defects. It should be no more than 1-2 sentences.
Original Requirement: {requirement}
Defects: {defects}
Rewritten Requirement:"""
response = call_groq_api(prompt)
return response.strip()
# Function to generate a PDF report with professional formatting
def generate_pdf_report(results):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
# Add watermark
pdf.set_font("Arial", 'B', 50)
pdf.set_text_color(230, 230, 230) # Light gray color for watermark
pdf.rotate(45) # Rotate the text for watermark effect
pdf.text(60, 150, "AI Powered Requirement Analysis")
pdf.rotate(0) # Reset rotation
# Add title and date/time
pdf.set_font("Arial", 'B', 16)
pdf.set_text_color(0, 0, 0) # Black color for title
pdf.cell(200, 10, txt="AI Powered Requirement Analysis and Defect Detection using LLaMA Model", ln=True, align='C')
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt=f"Report Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C')
pdf.ln(10) # Add some space
# Add requirements analysis
pdf.set_font("Arial", size=12)
for i, result in enumerate(results, start=1):
# Check if we need a new page
if pdf.get_y() > 250: # If the content is near the bottom of the page
pdf.add_page() # Add a new page
pdf.set_font("Arial", 'B', 16)
pdf.cell(200, 10, txt="AI Powered Requirement Analysis and Defect Detection using LLaMA Model", ln=True, align='C')
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt=f"Report Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C')
pdf.ln(10) # Add some space
# Add requirement details
pdf.set_font("Arial", 'B', 14)
pdf.multi_cell(200, 10, txt=f"Requirement R{i}: {result['Requirement']}", align='L')
pdf.set_font("Arial", size=12)
pdf.multi_cell(200, 10, txt=f"Type: {result['Type']}", align='L')
pdf.multi_cell(200, 10, txt=f"Stakeholders: {result['Stakeholders']}", align='L')
pdf.multi_cell(200, 10, txt=f"Domain: {result['Domain']}", align='L')
pdf.multi_cell(200, 10, txt=f"Defects: {result['Defects']}", align='L')
pdf.multi_cell(200, 10, txt=f"Rewritten: {result['Rewritten']}", align='L')
pdf.multi_cell(200, 10, txt="-" * 50, align='L')
pdf.ln(5) # Add some space between requirements
pdf_output = "requirements_report.pdf"
pdf.output(pdf_output)
return pdf_output
# Streamlit app
def main():
st.title("AI Powered Requirement Analysis and Defect Detection using Large Language Model LLaMA")
st.markdown("**Team:** MSSE-31")
st.markdown("**Model:** LLaMA-3.3-70b-Versatile")
# Input requirements manually
input_text = st.text_area("Enter your requirements (one per line or separated by periods):")
requirements = []
if input_text:
# Split by periods or newlines
requirements = [req.strip() for req in input_text.replace("\n", ".").split(".") if req.strip()]
# Analyze requirements
if st.button("Analyze Requirements"):
if not requirements:
st.warning("Please enter requirements.")
else:
results = []
for req in requirements:
if req.strip(): # Ignore empty lines
results.append(analyze_requirement(req.strip()))
# Display results
st.subheader("Analysis Results")
for i, result in enumerate(results, start=1):
st.write(f"### Requirement R{i}: {result['Requirement']}")
st.write(f"**Type:** {result['Type']}")
st.write(f"**Stakeholders:** {result['Stakeholders']}")
st.write(f"**Domain:** {result['Domain']}")
st.write(f"**Defects:** {result['Defects']}")
st.write(f"**Rewritten:** {result['Rewritten']}")
st.write("---")
# Generate and download PDF report
pdf_report = generate_pdf_report(results)
with open(pdf_report, "rb") as f:
st.download_button(
label="Download PDF Report",
data=f,
file_name="requirements_report.pdf",
mime="application/pdf"
)
# Run the app
if __name__ == "__main__":
main()