|
import streamlit as st |
|
import requests |
|
from fpdf import FPDF |
|
import os |
|
import time |
|
from datetime import datetime |
|
import groq |
|
|
|
|
|
api_key = os.getenv("GROQ_API_KEY", "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") |
|
|
|
|
|
groq_client = groq.Client(api_key=api_key) |
|
|
|
|
|
def call_groq_api(prompt): |
|
try: |
|
response = groq_client.chat.completions.create( |
|
model="llama-3.3-70b-versatile", |
|
messages=[ |
|
{"role": "user", "content": prompt} |
|
] |
|
) |
|
return response.choices[0].message.content |
|
except Exception as err: |
|
st.error(f"Error: {err}") |
|
return f"Error: {err}" |
|
|
|
|
|
def analyze_requirement(requirement): |
|
|
|
type_prompt = f"Classify the following requirement as Functional or Non-Functional:\n\n{requirement}\n\nType:" |
|
req_type = call_groq_api(type_prompt) |
|
|
|
|
|
stakeholders_prompt = f"Identify the stakeholders for the following requirement:\n\n{requirement}\n\nStakeholders:" |
|
stakeholders = call_groq_api(stakeholders_prompt) |
|
|
|
|
|
domain_prompt = f"Classify the domain for the following requirement (e.g., Bank, Healthcare, etc.):\n\n{requirement}\n\nDomain:" |
|
domain = call_groq_api(domain_prompt) |
|
|
|
|
|
defects_prompt = f"""Analyze the following requirement and identify ONLY MAJOR defects (e.g., Ambiguity, Incompleteness, etc.). |
|
If the requirement is clear and complete, respond with 'No defects.' |
|
Requirement: {requirement} |
|
Defects:""" |
|
defects = call_groq_api(defects_prompt) |
|
|
|
|
|
rewritten_prompt = f"""Rewrite the following requirement in 1-2 sentences to address the defects:\n\n{requirement}\n\nRewritten:""" |
|
rewritten = call_groq_api(rewritten_prompt).strip() |
|
|
|
return { |
|
"Requirement": requirement, |
|
"Type": req_type, |
|
"Stakeholders": stakeholders, |
|
"Domain": domain, |
|
"Defects": defects, |
|
"Rewritten": rewritten |
|
} |
|
|
|
|
|
def rewrite_requirement(requirement, defects): |
|
if "no defects" in defects.lower(): |
|
return "No modification needed." |
|
|
|
|
|
prompt = f"""Rewrite the following requirement to address the defects listed below. Ensure the rewritten requirement is clear, concise, and free of defects. It should be no more than 1-2 sentences. |
|
|
|
Original Requirement: {requirement} |
|
|
|
Defects: {defects} |
|
|
|
Rewritten Requirement:""" |
|
response = call_groq_api(prompt) |
|
return response.strip() |
|
|
|
|
|
def generate_pdf_report(results): |
|
pdf = FPDF() |
|
pdf.add_page() |
|
pdf.set_font("Arial", size=12) |
|
|
|
|
|
pdf.set_font("Arial", 'B', 50) |
|
pdf.set_text_color(230, 230, 230) |
|
pdf.rotate(45) |
|
pdf.text(60, 150, "AI Powered Requirement Analysis") |
|
pdf.rotate(0) |
|
|
|
|
|
pdf.set_font("Arial", 'B', 16) |
|
pdf.set_text_color(0, 0, 0) |
|
pdf.cell(200, 10, txt="AI Powered Requirement Analysis and Defect Detection using LLaMA Model", ln=True, align='C') |
|
pdf.set_font("Arial", size=12) |
|
pdf.cell(200, 10, txt=f"Report Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C') |
|
pdf.ln(10) |
|
|
|
|
|
pdf.set_font("Arial", size=12) |
|
for i, result in enumerate(results, start=1): |
|
|
|
if pdf.get_y() > 250: |
|
pdf.add_page() |
|
pdf.set_font("Arial", 'B', 16) |
|
pdf.cell(200, 10, txt="AI Powered Requirement Analysis and Defect Detection using LLaMA Model", ln=True, align='C') |
|
pdf.set_font("Arial", size=12) |
|
pdf.cell(200, 10, txt=f"Report Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C') |
|
pdf.ln(10) |
|
|
|
|
|
pdf.set_font("Arial", 'B', 14) |
|
pdf.multi_cell(200, 10, txt=f"Requirement R{i}: {result['Requirement']}", align='L') |
|
pdf.set_font("Arial", size=12) |
|
pdf.multi_cell(200, 10, txt=f"Type: {result['Type']}", align='L') |
|
pdf.multi_cell(200, 10, txt=f"Stakeholders: {result['Stakeholders']}", align='L') |
|
pdf.multi_cell(200, 10, txt=f"Domain: {result['Domain']}", align='L') |
|
pdf.multi_cell(200, 10, txt=f"Defects: {result['Defects']}", align='L') |
|
pdf.multi_cell(200, 10, txt=f"Rewritten: {result['Rewritten']}", align='L') |
|
pdf.multi_cell(200, 10, txt="-" * 50, align='L') |
|
pdf.ln(5) |
|
|
|
pdf_output = "requirements_report.pdf" |
|
pdf.output(pdf_output) |
|
return pdf_output |
|
|
|
|
|
def main(): |
|
st.title("AI Powered Requirement Analysis and Defect Detection using Large Language Model LLaMA") |
|
st.markdown("**Team:** MSSE-31") |
|
st.markdown("**Model:** LLaMA-3.3-70b-Versatile") |
|
|
|
|
|
input_text = st.text_area("Enter your requirements (one per line or separated by periods):") |
|
requirements = [] |
|
if input_text: |
|
|
|
requirements = [req.strip() for req in input_text.replace("\n", ".").split(".") if req.strip()] |
|
|
|
|
|
if st.button("Analyze Requirements"): |
|
if not requirements: |
|
st.warning("Please enter requirements.") |
|
else: |
|
results = [] |
|
for req in requirements: |
|
if req.strip(): |
|
results.append(analyze_requirement(req.strip())) |
|
|
|
|
|
st.subheader("Analysis Results") |
|
for i, result in enumerate(results, start=1): |
|
st.write(f"### Requirement R{i}: {result['Requirement']}") |
|
st.write(f"**Type:** {result['Type']}") |
|
st.write(f"**Stakeholders:** {result['Stakeholders']}") |
|
st.write(f"**Domain:** {result['Domain']}") |
|
st.write(f"**Defects:** {result['Defects']}") |
|
st.write(f"**Rewritten:** {result['Rewritten']}") |
|
st.write("---") |
|
|
|
|
|
pdf_report = generate_pdf_report(results) |
|
with open(pdf_report, "rb") as f: |
|
st.download_button( |
|
label="Download PDF Report", |
|
data=f, |
|
file_name="requirements_report.pdf", |
|
mime="application/pdf" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |