File size: 7,094 Bytes
81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 83f6254 7b14dbf 81b8d37 83f6254 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 5f670d5 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 8a0a253 83f6254 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf 81b8d37 7b14dbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import streamlit as st
import requests
from fpdf import FPDF
import os
import time
from datetime import datetime
import groq
# Groq API key (replace with your key or use environment variable)
api_key = os.getenv("GROQ_API_KEY", "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")
# Initialize Groq client
groq_client = groq.Client(api_key=api_key)
# Function to call Groq API with rate limit handling
def call_groq_api(prompt):
try:
response = groq_client.chat.completions.create(
model="llama-3.3-70b-versatile", # Correct model name
messages=[
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content
except Exception as err:
st.error(f"Error: {err}")
return f"Error: {err}"
# Function to analyze a single requirement
def analyze_requirement(requirement):
# Detect requirement type
type_prompt = f"Classify the following requirement as Functional or Non-Functional:\n\n{requirement}\n\nType:"
req_type = call_groq_api(type_prompt)
# Identify stakeholders
stakeholders_prompt = f"Identify the stakeholders for the following requirement:\n\n{requirement}\n\nStakeholders:"
stakeholders = call_groq_api(stakeholders_prompt)
# Classify domain
domain_prompt = f"Classify the domain for the following requirement (e.g., Bank, Healthcare, etc.):\n\n{requirement}\n\nDomain:"
domain = call_groq_api(domain_prompt)
# Detect defects
defects_prompt = f"""Analyze the following requirement and identify ONLY MAJOR defects (e.g., Ambiguity, Incompleteness, etc.).
If the requirement is clear and complete, respond with 'No defects.'
Requirement: {requirement}
Defects:"""
defects = call_groq_api(defects_prompt)
# Rewrite requirement
rewritten_prompt = f"""Rewrite the following requirement in 1-2 sentences to address the defects:\n\n{requirement}\n\nRewritten:"""
rewritten = call_groq_api(rewritten_prompt).strip()
return {
"Requirement": requirement,
"Type": req_type,
"Stakeholders": stakeholders,
"Domain": domain,
"Defects": defects,
"Rewritten": rewritten
}
# Function to rewrite requirement concisely
def rewrite_requirement(requirement, defects):
if "no defects" in defects.lower():
return "No modification needed."
# If defects are found, generate a concise and clear rewritten requirement
prompt = f"""Rewrite the following requirement to address the defects listed below. Ensure the rewritten requirement is clear, concise, and free of defects. It should be no more than 1-2 sentences.
Original Requirement: {requirement}
Defects: {defects}
Rewritten Requirement:"""
response = call_groq_api(prompt)
return response.strip()
# Function to generate a PDF report with professional formatting
def generate_pdf_report(results):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
# Add watermark
pdf.set_font("Arial", 'B', 50)
pdf.set_text_color(230, 230, 230) # Light gray color for watermark
pdf.rotate(45) # Rotate the text for watermark effect
pdf.text(60, 150, "AI Powered Requirement Analysis")
pdf.rotate(0) # Reset rotation
# Add title and date/time
pdf.set_font("Arial", 'B', 16)
pdf.set_text_color(0, 0, 0) # Black color for title
pdf.cell(200, 10, txt="AI Powered Requirement Analysis and Defect Detection using LLaMA Model", ln=True, align='C')
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt=f"Report Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C')
pdf.ln(10) # Add some space
# Add requirements analysis
pdf.set_font("Arial", size=12)
for i, result in enumerate(results, start=1):
# Check if we need a new page
if pdf.get_y() > 250: # If the content is near the bottom of the page
pdf.add_page() # Add a new page
pdf.set_font("Arial", 'B', 16)
pdf.cell(200, 10, txt="AI Powered Requirement Analysis and Defect Detection using LLaMA Model", ln=True, align='C')
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt=f"Report Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", ln=True, align='C')
pdf.ln(10) # Add some space
# Add requirement details
pdf.set_font("Arial", 'B', 14)
pdf.multi_cell(200, 10, txt=f"Requirement R{i}: {result['Requirement']}", align='L')
pdf.set_font("Arial", size=12)
pdf.multi_cell(200, 10, txt=f"Type: {result['Type']}", align='L')
pdf.multi_cell(200, 10, txt=f"Stakeholders: {result['Stakeholders']}", align='L')
pdf.multi_cell(200, 10, txt=f"Domain: {result['Domain']}", align='L')
pdf.multi_cell(200, 10, txt=f"Defects: {result['Defects']}", align='L')
pdf.multi_cell(200, 10, txt=f"Rewritten: {result['Rewritten']}", align='L')
pdf.multi_cell(200, 10, txt="-" * 50, align='L')
pdf.ln(5) # Add some space between requirements
pdf_output = "requirements_report.pdf"
pdf.output(pdf_output)
return pdf_output
# Streamlit app
def main():
st.title("AI Powered Requirement Analysis and Defect Detection using Large Language Model LLaMA")
st.markdown("**Team:** MSSE-31")
st.markdown("**Model:** LLaMA-3.3-70b-Versatile")
# Input requirements manually
input_text = st.text_area("Enter your requirements (one per line or separated by periods):")
requirements = []
if input_text:
# Split by periods or newlines
requirements = [req.strip() for req in input_text.replace("\n", ".").split(".") if req.strip()]
# Analyze requirements
if st.button("Analyze Requirements"):
if not requirements:
st.warning("Please enter requirements.")
else:
results = []
for req in requirements:
if req.strip(): # Ignore empty lines
results.append(analyze_requirement(req.strip()))
# Display results
st.subheader("Analysis Results")
for i, result in enumerate(results, start=1):
st.write(f"### Requirement R{i}: {result['Requirement']}")
st.write(f"**Type:** {result['Type']}")
st.write(f"**Stakeholders:** {result['Stakeholders']}")
st.write(f"**Domain:** {result['Domain']}")
st.write(f"**Defects:** {result['Defects']}")
st.write(f"**Rewritten:** {result['Rewritten']}")
st.write("---")
# Generate and download PDF report
pdf_report = generate_pdf_report(results)
with open(pdf_report, "rb") as f:
st.download_button(
label="Download PDF Report",
data=f,
file_name="requirements_report.pdf",
mime="application/pdf"
)
# Run the app
if __name__ == "__main__":
main() |