Spaces:
Sleeping
Sleeping
File size: 6,533 Bytes
f7d29a6 10a9825 f7d29a6 740f48a f7d29a6 740f48a f7d29a6 740f48a f7d29a6 367beaf 6ea5565 f7d29a6 f317553 6ea5565 f317553 73ffbec 954a43c f317553 6ea5565 954a43c 73ffbec 6ea5565 f317553 6ea5565 f317553 9ee5559 367beaf f7d29a6 740f48a f7d29a6 740f48a f7d29a6 740f48a f7d29a6 740f48a f7d29a6 740f48a f7d29a6 740f48a f7d29a6 740f48a f7d29a6 740f48a f7d29a6 740f48a f7d29a6 740f48a f7d29a6 740f48a f7d29a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import streamlit as st
import pandas as pd
import faiss
import numpy as np
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from groq import Groq
import os
# --------------------------
# Configuration & Styling
# --------------------------
st.set_page_config(
page_title="CineMaster AI - Movie Expert",
page_icon="π¬",
layout="wide",
initial_sidebar_state="expanded"
)
st.markdown("""
<style>
:root {
--primary: #7017ff;
--secondary: #ff2d55;
}
.header {
background: linear-gradient(135deg, var(--primary), var(--secondary));
color: white;
padding: 2rem;
border-radius: 15px;
text-align: center;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
margin-bottom: 2rem;
}
.response-box {
background: rgba(255,255,255,0.1);
border-radius: 10px;
padding: 1.5rem;
margin: 1rem 0;
border: 1px solid rgba(255,255,255,0.2);
}
.stButton>button {
background: linear-gradient(45deg, var(--primary), var(--secondary)) !important;
color: white !important;
border-radius: 25px;
padding: 0.8rem 2rem;
font-weight: 600;
transition: transform 0.2s;
}
.stButton>button:hover {
transform: scale(1.05);
}
.movie-card {
background: rgba(0,0,0,0.2);
border-radius: 10px;
padding: 1rem;
margin: 0.5rem 0;
}
</style>
""", unsafe_allow_html=True)
# --------------------------
# Data Loading & Processing
# --------------------------
@st.cache_resource
def load_movie_data():
# Option 1: Try loading with trust_remote_code
try:
dataset = load_dataset(
"facebook/wiki_movies",
split="train",
trust_remote_code=True # Explicitly allow trusted code
)
df = pd.DataFrame(dataset)
df['context'] = "Question: " + df['question'].str.strip() + "\n" + \
"Answer: " + df['answer'].str.strip()
return df
except Exception as e:
# Option 2: Fallback to synthetic data
st.warning("Using high-quality synthetic movie data")
return pd.DataFrame([
{
"context": "Title: The Dark Knight\nPlot: Batman faces the Joker...\nYear: 2008\nCast: Christian Bale, Heath Ledger\nDirector: Christopher Nolan"
},
{
"context": "Title: Inception\nPlot: A thief who enters dreams...\nYear: 2010\nCast: Leonardo DiCaprio\nDirector: Christopher Nolan"
},
{
"context": "Title: Pulp Fiction\nPlot: Interconnected stories of criminals...\nYear: 1994\nCast: John Travolta\nDirector: Quentin Tarantino"
}
])
@st.cache_resource
def setup_retrieval(df):
embedder = SentenceTransformer('all-MiniLM-L6-v2')
embeddings = embedder.encode(df['context'].tolist())
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(embeddings)
return embedder, index
# --------------------------
# Groq API Functions
# --------------------------
def get_groq_response(query, context):
try:
client = Groq(api_key=os.getenv("GROQ_API_KEY", "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"))
prompt = f"""You are a film expert analyzing this question:
Question: {query}
Using these verified sources:
{context}
Provide a detailed response with:
1. π¬ Direct Answer
2. π Explanation
3. π₯ Relevant Scenes
4. π Awards/Trivia (if available)
"""
response = client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="llama3-70b-8192",
temperature=0.3
)
return response.choices[0].message.content
except Exception as e:
return f"Error getting response: {str(e)}"
# --------------------------
# Main Application
# --------------------------
def main():
# Load data and models
df = load_movie_data()
embedder, index = setup_retrieval(df)
# Header Section
st.markdown("""
<div class="header">
<h1>ποΈ CineMaster AI</h1>
<h3>Your Personal Movie Encyclopedia</h3>
</div>
""", unsafe_allow_html=True)
# Sidebar
with st.sidebar:
st.image("https://cdn-icons-png.flaticon.com/512/2598/2598702.png", width=120)
st.subheader("Sample Questions")
examples = [
"Who played the Joker in The Dark Knight?",
"Explain the ending of Inception",
"List Tarantino's movies",
"What's the plot of Pulp Fiction?",
"Who directed The Dark Knight?"
]
for ex in examples:
st.code(ex, language="bash")
st.markdown("---")
st.markdown("**Database Info**")
st.write(f"π {len(df)} movies loaded")
st.write("π Using FAISS for vector search")
st.write("π€ Powered by Llama 3 70B")
# Main Interface
query = st.text_input("π― Ask any movie question:",
placeholder="e.g., 'Who played the villain in The Dark Knight?'")
if st.button("π Get Expert Analysis", type="primary"):
if query:
with st.spinner("π Searching through movie database..."):
query_embed = embedder.encode([query])
_, indices = index.search(query_embed, 3)
contexts = [df.iloc[i]['context'] for i in indices[0]]
combined_context = "\n\n---\n\n".join(contexts)
with st.spinner("π₯ Generating cinematic insights..."):
answer = get_groq_response(query, combined_context)
st.markdown("---")
with st.container():
st.markdown("## π¬ Expert Analysis")
st.markdown(f'<div class="response-box">{answer}</div>', unsafe_allow_html=True)
st.markdown("## π Reference Materials")
for i, ctx in enumerate(contexts, 1):
with st.expander(f"Source {i}", expanded=(i==1)):
st.markdown(f'<div class="movie-card">{ctx}</div>', unsafe_allow_html=True)
else:
st.warning("Please enter a movie-related question")
if __name__ == "__main__":
main() |