Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -30,6 +30,7 @@ st.markdown("""
|
|
30 |
border-radius: 15px;
|
31 |
text-align: center;
|
32 |
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
|
|
33 |
}
|
34 |
.response-box {
|
35 |
background: rgba(255,255,255,0.1);
|
@@ -49,19 +50,47 @@ st.markdown("""
|
|
49 |
.stButton>button:hover {
|
50 |
transform: scale(1.05);
|
51 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
</style>
|
53 |
""", unsafe_allow_html=True)
|
54 |
|
55 |
# --------------------------
|
56 |
-
#
|
57 |
# --------------------------
|
58 |
-
# Replace load_movie_data() with:
|
59 |
@st.cache_resource
|
60 |
def load_movie_data():
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
@st.cache_resource
|
67 |
def setup_retrieval(df):
|
@@ -73,38 +102,40 @@ def setup_retrieval(df):
|
|
73 |
return embedder, index
|
74 |
|
75 |
# --------------------------
|
76 |
-
# Groq API
|
77 |
# --------------------------
|
78 |
-
def
|
79 |
-
|
80 |
-
api_key=os.getenv("GROQ_API_KEY", "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")
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
103 |
|
104 |
# --------------------------
|
105 |
# Main Application
|
106 |
# --------------------------
|
107 |
def main():
|
|
|
108 |
df = load_movie_data()
|
109 |
embedder, index = setup_retrieval(df)
|
110 |
|
@@ -122,40 +153,44 @@ def main():
|
|
122 |
st.subheader("Sample Questions")
|
123 |
examples = [
|
124 |
"Who played the Joker in The Dark Knight?",
|
125 |
-
"
|
126 |
-
"List
|
127 |
-
"
|
128 |
-
"
|
129 |
]
|
130 |
for ex in examples:
|
131 |
st.code(ex, language="bash")
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
# Main Interface
|
134 |
query = st.text_input("π― Ask any movie question:",
|
135 |
placeholder="e.g., 'Who played the villain in The Dark Knight?'")
|
136 |
|
137 |
-
if st.button("π Get
|
138 |
if query:
|
139 |
-
with st.spinner("π Searching through
|
140 |
query_embed = embedder.encode([query])
|
141 |
-
_, indices = index.search(query_embed,
|
142 |
contexts = [df.iloc[i]['context'] for i in indices[0]]
|
143 |
-
combined_context = "\n\n".join(contexts)
|
144 |
|
145 |
with st.spinner("π₯ Generating cinematic insights..."):
|
146 |
-
answer =
|
147 |
|
148 |
st.markdown("---")
|
149 |
with st.container():
|
150 |
st.markdown("## π¬ Expert Analysis")
|
151 |
st.markdown(f'<div class="response-box">{answer}</div>', unsafe_allow_html=True)
|
152 |
|
153 |
-
st.markdown("## π
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
with st.expander(f"Source {i+1}", expanded=True):
|
158 |
-
st.write(ctx)
|
159 |
else:
|
160 |
st.warning("Please enter a movie-related question")
|
161 |
|
|
|
30 |
border-radius: 15px;
|
31 |
text-align: center;
|
32 |
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
33 |
+
margin-bottom: 2rem;
|
34 |
}
|
35 |
.response-box {
|
36 |
background: rgba(255,255,255,0.1);
|
|
|
50 |
.stButton>button:hover {
|
51 |
transform: scale(1.05);
|
52 |
}
|
53 |
+
.movie-card {
|
54 |
+
background: rgba(0,0,0,0.2);
|
55 |
+
border-radius: 10px;
|
56 |
+
padding: 1rem;
|
57 |
+
margin: 0.5rem 0;
|
58 |
+
}
|
59 |
</style>
|
60 |
""", unsafe_allow_html=True)
|
61 |
|
62 |
# --------------------------
|
63 |
+
# Data Loading & Processing
|
64 |
# --------------------------
|
|
|
65 |
@st.cache_resource
|
66 |
def load_movie_data():
|
67 |
+
try:
|
68 |
+
# Try loading wiki_movies dataset
|
69 |
+
dataset = load_dataset("wikipedia", "20220301.en", split="train[:5000]")
|
70 |
+
df = pd.DataFrame(dataset)
|
71 |
+
|
72 |
+
# Create synthetic movie data from Wikipedia snippets
|
73 |
+
df['title'] = df['title'].apply(lambda x: x.replace("_", " "))
|
74 |
+
df['context'] = "Title: " + df['title'] + "\nContent: " + df['text'].str[:500] + "..."
|
75 |
+
return df.sample(1000) # Return random 1000 entries
|
76 |
+
|
77 |
+
except Exception as e:
|
78 |
+
st.warning(f"Couldn't load dataset: {str(e)}. Using synthetic data.")
|
79 |
+
movies = [
|
80 |
+
{
|
81 |
+
"title": "The Dark Knight",
|
82 |
+
"context": "Title: The Dark Knight\nPlot: Batman faces the Joker in a battle for Gotham's soul...\nCast: Christian Bale, Heath Ledger\nYear: 2008\nDirector: Christopher Nolan"
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"title": "Inception",
|
86 |
+
"context": "Title: Inception\nPlot: A thief who enters the dreams of others...\nCast: Leonardo DiCaprio, Tom Hardy\nYear: 2010\nDirector: Christopher Nolan"
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"title": "Pulp Fiction",
|
90 |
+
"context": "Title: Pulp Fiction\nPlot: The lives of two mob hitmen, a boxer, and a gangster's wife intertwine...\nCast: John Travolta, Samuel L. Jackson\nYear: 1994\nDirector: Quentin Tarantino"
|
91 |
+
}
|
92 |
+
]
|
93 |
+
return pd.DataFrame(movies)
|
94 |
|
95 |
@st.cache_resource
|
96 |
def setup_retrieval(df):
|
|
|
102 |
return embedder, index
|
103 |
|
104 |
# --------------------------
|
105 |
+
# Groq API Functions
|
106 |
# --------------------------
|
107 |
+
def get_groq_response(query, context):
|
108 |
+
try:
|
109 |
+
client = Groq(api_key=os.getenv("GROQ_API_KEY", "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"))
|
110 |
+
|
111 |
+
prompt = f"""You are a film expert analyzing this question:
|
112 |
+
|
113 |
+
Question: {query}
|
114 |
+
|
115 |
+
Using these verified sources:
|
116 |
+
{context}
|
117 |
+
|
118 |
+
Provide a detailed response with:
|
119 |
+
1. π¬ Direct Answer
|
120 |
+
2. π Explanation
|
121 |
+
3. π₯ Relevant Scenes
|
122 |
+
4. π Awards/Trivia (if available)
|
123 |
+
"""
|
124 |
+
|
125 |
+
response = client.chat.completions.create(
|
126 |
+
messages=[{"role": "user", "content": prompt}],
|
127 |
+
model="llama3-70b-8192",
|
128 |
+
temperature=0.3
|
129 |
+
)
|
130 |
+
return response.choices[0].message.content
|
131 |
+
except Exception as e:
|
132 |
+
return f"Error getting response: {str(e)}"
|
133 |
|
134 |
# --------------------------
|
135 |
# Main Application
|
136 |
# --------------------------
|
137 |
def main():
|
138 |
+
# Load data and models
|
139 |
df = load_movie_data()
|
140 |
embedder, index = setup_retrieval(df)
|
141 |
|
|
|
153 |
st.subheader("Sample Questions")
|
154 |
examples = [
|
155 |
"Who played the Joker in The Dark Knight?",
|
156 |
+
"Explain the ending of Inception",
|
157 |
+
"List Tarantino's movies",
|
158 |
+
"What's the plot of Pulp Fiction?",
|
159 |
+
"Who directed The Dark Knight?"
|
160 |
]
|
161 |
for ex in examples:
|
162 |
st.code(ex, language="bash")
|
163 |
+
|
164 |
+
st.markdown("---")
|
165 |
+
st.markdown("**Database Info**")
|
166 |
+
st.write(f"π {len(df)} movies loaded")
|
167 |
+
st.write("π Using FAISS for vector search")
|
168 |
+
st.write("π€ Powered by Llama 3 70B")
|
169 |
|
170 |
# Main Interface
|
171 |
query = st.text_input("π― Ask any movie question:",
|
172 |
placeholder="e.g., 'Who played the villain in The Dark Knight?'")
|
173 |
|
174 |
+
if st.button("π Get Expert Analysis", type="primary"):
|
175 |
if query:
|
176 |
+
with st.spinner("π Searching through movie database..."):
|
177 |
query_embed = embedder.encode([query])
|
178 |
+
_, indices = index.search(query_embed, 3)
|
179 |
contexts = [df.iloc[i]['context'] for i in indices[0]]
|
180 |
+
combined_context = "\n\n---\n\n".join(contexts)
|
181 |
|
182 |
with st.spinner("π₯ Generating cinematic insights..."):
|
183 |
+
answer = get_groq_response(query, combined_context)
|
184 |
|
185 |
st.markdown("---")
|
186 |
with st.container():
|
187 |
st.markdown("## π¬ Expert Analysis")
|
188 |
st.markdown(f'<div class="response-box">{answer}</div>', unsafe_allow_html=True)
|
189 |
|
190 |
+
st.markdown("## π Reference Materials")
|
191 |
+
for i, ctx in enumerate(contexts, 1):
|
192 |
+
with st.expander(f"Source {i}", expanded=(i==1)):
|
193 |
+
st.markdown(f'<div class="movie-card">{ctx}</div>', unsafe_allow_html=True)
|
|
|
|
|
194 |
else:
|
195 |
st.warning("Please enter a movie-related question")
|
196 |
|