Spaces:
Running
Running
import streamlit as st | |
import joblib | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
# Page configuration | |
st.set_page_config( | |
page_title="Loan Approval System", | |
page_icon="🏦", | |
layout="centered", | |
initial_sidebar_state="collapsed" | |
) | |
# Custom CSS for styling with the specified color theme | |
st.markdown(""" | |
<style> | |
/* Color Theme */ | |
:root { | |
--primary-purple: #7950F2; | |
--primary-purple-light: #9775F3; | |
--primary-purple-dark: #5F3DC4; | |
--complementary-orange: #FF5E3A; | |
--complementary-orange-light: #FF8A6C; | |
--light-gray: #F8F9FA; | |
--dark-gray: #343A40; | |
} | |
/* Main containers */ | |
.main .block-container { | |
padding: 2rem; | |
border-radius: 10px; | |
background-color: white; | |
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05); | |
} | |
/* Font family - applied globally */ | |
* { | |
font-family: 'Helvetica', 'Arial', sans-serif !important; | |
} | |
/* Specific selectors to ensure Helvetica is applied everywhere */ | |
body, .stMarkdown, p, h1, h2, h3, h4, h5, h6, .stButton, .stSelectbox, .stNumberInput, | |
.stTextInput, div, span, .streamlit-container, .stAlert, .stText, button, input, select, | |
textarea, .streamlit-expanderHeader, .streamlit-expanderContent { | |
font-family: 'Helvetica', 'Arial', sans-serif !important; | |
} | |
/* Headers */ | |
h1, h2, h3 { | |
color: var(--primary-purple-dark); | |
} | |
/* Custom cards for sections */ | |
.section-card { | |
background-color: var(--light-gray); | |
border-radius: 8px; | |
padding: 1.5rem; | |
margin-bottom: 1.5rem; | |
border-left: 4px solid var(--primary-purple); | |
} | |
/* Remove purple left border from the first section card */ | |
.remove-border { | |
border-left: none !important; | |
} | |
/* Button styling */ | |
.stButton > button { | |
background-color: var(--primary-purple); | |
color: white; | |
border: none; | |
border-radius: 5px; | |
padding: 0.5rem 1rem; | |
font-weight: bold; | |
width: 100%; | |
transition: all 0.3s; | |
} | |
.stButton > button:hover { | |
background-color: var(--primary-purple-dark); | |
transform: translateY(-2px); | |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); | |
} | |
/* Result styling */ | |
.result-approved { | |
background-color: #E8F5E9; | |
border-left: 4px solid #4CAF50; | |
padding: 1rem; | |
border-radius: 5px; | |
margin-top: 1rem; | |
} | |
.result-rejected { | |
background-color: #FFEBEE; | |
border-left: 4px solid #F44336; | |
padding: 1rem; | |
border-radius: 5px; | |
margin-top: 1rem; | |
} | |
/* Input widgets */ | |
.stNumberInput, .stSelectbox { | |
margin-bottom: 1rem; | |
} | |
/* Footer */ | |
.footer { | |
text-align: center; | |
margin-top: 2rem; | |
padding-top: 1rem; | |
border-top: 1px solid #EEEEEE; | |
font-size: 0.8rem; | |
color: #666666; | |
} | |
/* Divider */ | |
.divider { | |
border-top: 1px solid #EEEEEE; | |
margin: 1.5rem 0; | |
} | |
/* Badge */ | |
.badge { | |
display: inline-block; | |
background-color: var(--complementary-orange); | |
color: white; | |
padding: 0.25rem 0.5rem; | |
border-radius: 4px; | |
font-size: 0.8rem; | |
margin-left: 0.5rem; | |
} | |
/* Banner image styling */ | |
.banner-image { | |
width: 100%; | |
margin-bottom: 1.5rem; | |
border-radius: 10px; | |
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1); | |
} | |
/* Footer disclaimer */ | |
.footer-disclaimer { | |
text-align: center; | |
margin-top: 2rem; | |
padding: 1rem; | |
border-top: 1px solid #EEEEEE; | |
font-size: 0.9rem; | |
color: #666666; | |
line-height: 1.5; | |
background-color: var(--light-gray); | |
border-radius: 5px; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# App header with banner image instead of title | |
st.markdown('<img src="https://i.postimg.cc/R0gGW9kb/ACTION-PLAN.png" class="banner-image" alt="SmartLoanAI Banner">', unsafe_allow_html=True) | |
# Load the trained model from Hugging Face | |
def load_model(): | |
model_path = hf_hub_download(repo_id="ifiecas/LoanApproval-DT-v1.0", filename="best_pruned_dt.pkl") | |
return joblib.load(model_path) | |
model = load_model() | |
# Initialize session state for restart functionality | |
if 'restart_clicked' not in st.session_state: | |
st.session_state.restart_clicked = False | |
# Create tabs for better organization | |
tab1, tab2 = st.tabs(["Loan Application", "About the System"]) | |
with tab1: | |
# Reset all form values if restart was clicked | |
if st.session_state.restart_clicked: | |
st.session_state.restart_clicked = False # Reset flag | |
# Personal Information Section | |
st.markdown('<div class="section-card"><h3>Personal Information</h3>', unsafe_allow_html=True) | |
col1, col2 = st.columns(2) | |
with col1: | |
gender = st.selectbox("Gender", ["Male", "Female"]) | |
education = st.selectbox("Education Level", ["Graduate", "Under Graduate"]) | |
with col2: | |
marital_status = st.selectbox("Marital Status", ["Married", "Not Married"]) | |
number_of_dependents = st.number_input("Number of Dependents", min_value=0, max_value=10, value=0) | |
self_employed = st.selectbox("Self-Employed", ["No", "Yes"]) | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Financial Details Section | |
st.markdown('<div class="section-card"><h3>Financial Details</h3>', unsafe_allow_html=True) | |
col1, col2 = st.columns(2) | |
with col1: | |
applicant_income = st.number_input("Monthly Income ($)", min_value=0, value=5000) | |
loan_amount = st.number_input("Loan Amount ($)", min_value=0, value=100000) | |
credit_history = st.selectbox("Credit History Status", [1, 0], | |
format_func=lambda x: "No existing unsettled loans (1)" if x == 1 else "Have unsettled loans (0)") | |
with col2: | |
coapplicant_income = st.number_input("Co-Applicant's Income ($)", min_value=0) | |
loan_term = st.slider("Loan Term (months)", min_value=12, max_value=360, value=180, step=12) | |
location = st.selectbox("Property Location", ["Urban", "Semiurban", "Rural"]) | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Summary section - without DTI Assessment or Eligibility Check | |
st.markdown('<div class="section-card"><h3>Application Summary</h3>', unsafe_allow_html=True) | |
total_income = applicant_income + coapplicant_income | |
# Calculate monthly payment (simplified calculation) | |
interest_rate = 0.05 # Assuming 5% annual interest rate | |
monthly_interest = interest_rate / 12 | |
num_payments = loan_term | |
# Monthly payment using the loan amortization formula | |
if monthly_interest == 0 or num_payments == 0: | |
monthly_payment = 0 | |
else: | |
monthly_payment = loan_amount * (monthly_interest * (1 + monthly_interest) ** num_payments) / \ | |
((1 + monthly_interest) ** num_payments - 1) | |
# Calculate DTI for backend use only (not displayed) | |
dti = (monthly_payment / total_income) if total_income > 0 else 0 | |
dti_percent = dti * 100 | |
# Display summary metrics | |
col1, col2, col3 = st.columns(3) | |
col1.metric("Total Monthly Income", f"${total_income:,}") | |
col2.metric("Estimated Monthly Payment", f"${monthly_payment:.2f}") | |
col3.metric("Loan Term", f"{loan_term//12} years") | |
# Add interest rate disclaimer | |
st.markdown(f""" | |
<div style="font-size: 0.8rem; color: #666; margin-top: -10px; margin-bottom: 20px;"> | |
* Estimated payment based on {interest_rate*100:.1f}% annual interest rate. Actual rates may vary. | |
</div> | |
""", unsafe_allow_html=True) | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Prediction and restart buttons | |
col1, col2 = st.columns([3, 1]) | |
with col1: | |
predict_button = st.button("Check Loan Approval Status", use_container_width=True) | |
with col2: | |
restart_button = st.button("🔄 Restart", use_container_width=True, | |
help="Reset all form fields and start over") | |
# Handle restart button click | |
if restart_button: | |
st.session_state.restart_clicked = True | |
st.rerun() # Using st.rerun() instead of st.experimental_rerun() | |
def preprocess_input(): | |
# Convert categorical inputs to numerical format based on encoding reference | |
gender_num = 0 if gender == "Male" else 1 | |
marital_status_num = 0 if marital_status == "Not Married" else 1 | |
education_num = 0 if education == "Under Graduate" else 1 | |
self_employed_num = 0 if self_employed == "No" else 1 | |
credit_history_num = credit_history # Already numerical (0,1) | |
# One-Hot Encoding for Location | |
location_semiurban = 1 if location == "Semiurban" else 0 | |
location_urban = 1 if location == "Urban" else 0 | |
# Convert Term from months to years | |
term_years = loan_term / 12 | |
# Compute Derived Features - use the same monthly payment calculated above | |
debt_to_income = monthly_payment / total_income if total_income > 0 else 0 | |
credit_amount_interaction = loan_amount * credit_history_num # Interaction effect | |
income_term_ratio = total_income / term_years if term_years > 0 else 0 # Avoid divide by zero | |
# Return array with all 16 features | |
return np.array([[ | |
gender_num, marital_status_num, number_of_dependents, education_num, self_employed_num, | |
applicant_income, coapplicant_income, loan_amount, credit_history_num, | |
total_income, debt_to_income, location_semiurban, location_urban, term_years, | |
credit_amount_interaction, income_term_ratio | |
]]) | |
# Display prediction | |
if predict_button: | |
with st.spinner("Processing your application..."): | |
input_data = preprocess_input() | |
prediction = model.predict(input_data) | |
# Apply additional rules to override the model in certain cases (backend only) | |
manual_rejection = False | |
# Rule-based rejections that override the model (but don't show to user) | |
if total_income < 1500: | |
manual_rejection = True | |
elif dti_percent > 50: | |
manual_rejection = True | |
elif credit_history == 0 and dti_percent > 35: | |
manual_rejection = True | |
# Final decision combines model prediction and manual eligibility checks | |
final_approval = (prediction[0] == 1) and not manual_rejection | |
# Show result with enhanced styling | |
if final_approval: | |
st.markdown(""" | |
<div class="result-approved"> | |
<h3 style="color: #2E7D32;">✅ Loan Approved</h3> | |
<p>Congratulations! Based on your information, you're eligible for this loan.</p> | |
</div> | |
""", unsafe_allow_html=True) | |
else: | |
st.markdown(""" | |
<div class="result-rejected"> | |
<h3 style="color: #C62828;">❌ Loan Not Approved</h3> | |
<p>Unfortunately, based on your current information, we cannot approve your loan application.</p> | |
<p>Consider improving your credit score, reducing existing debt, or applying with a co-applicant with higher income.</p> | |
</div> | |
""", unsafe_allow_html=True) | |
with tab2: | |
# Add custom CSS for better styling | |
st.markdown(""" | |
<style> | |
/* Main container styling */ | |
.about-container { | |
background-color: #f8f9fa; | |
border-radius: 10px; | |
padding: 20px; | |
margin-bottom: 20px; | |
} | |
/* Section styling */ | |
.about-section { | |
margin-bottom: 25px; | |
} | |
/* Section headers */ | |
.section-header { | |
color: #1e3a8a; | |
font-size: 20px; | |
font-weight: 600; | |
margin-bottom: 10px; | |
border-bottom: 2px solid #e5e7eb; | |
padding-bottom: 5px; | |
} | |
/* Regular text */ | |
.about-text { | |
font-size: 16px; | |
line-height: 1.6; | |
color: #374151; | |
} | |
/* Metrics card container */ | |
.metrics-container { | |
display: flex; | |
flex-wrap: wrap; | |
gap: 15px; | |
margin: 15px 0; | |
} | |
/* Individual metric card */ | |
.metric-card { | |
background-color: white; | |
border-radius: 8px; | |
padding: 15px; | |
min-width: 120px; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.05); | |
flex: 1; | |
text-align: center; | |
} | |
/* Metric value */ | |
.metric-value { | |
font-size: 22px; | |
font-weight: 600; | |
color: #2563eb; | |
} | |
/* Metric label */ | |
.metric-label { | |
font-size: 14px; | |
color: #6b7280; | |
margin-top: 5px; | |
} | |
/* Footer styling */ | |
.footer-disclaimer { | |
background-color: #f3f4f6; | |
border-radius: 8px; | |
padding: 15px; | |
margin-top: 30px; | |
border-left: 4px solid #9ca3af; | |
font-size: 14px; | |
color: #4b5563; | |
} | |
/* Author bio section */ | |
.author-bio { | |
display: flex; | |
align-items: center; | |
gap: 15px; | |
background-color: white; | |
border-radius: 8px; | |
padding: 15px; | |
margin: 20px 0; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.05); | |
} | |
/* Author image placeholder */ | |
.author-image { | |
width: 60px; | |
height: 60px; | |
border-radius: 50%; | |
background-color: #e5e7eb; | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
color: #9ca3af; | |
font-size: 20px; | |
font-weight: bold; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Main content container | |
st.markdown('<div class="about-container">', unsafe_allow_html=True) | |
# System overview section | |
st.markdown('<div class="about-section">', unsafe_allow_html=True) | |
st.markdown('<h2 class="section-header">About the Loan Approval System</h2>', unsafe_allow_html=True) | |
st.markdown( | |
'<p class="about-text">This prototype evaluates loan applications using machine learning and ' | |
'industry-standard criteria. It analyzes financial information, credit history, and loan requirements' | |
'to provide fast, objective loan decisions.</p>', unsafe_allow_html=True | |
) | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Model information section | |
st.markdown('<div class="about-section">', unsafe_allow_html=True) | |
st.markdown('<h2 class="section-header">About the ML Model</h2>', unsafe_allow_html=True) | |
st.markdown( | |
'<p class="about-text">The machine learning model powering this system is a Decision Tree classifier, ' | |
'which outperformed several alternatives including KNN, Random Forest, Logistic Regression, and Support ' | |
'Vector Machine in our testing phase. The model was refined using Cost Complexity Pruning (CCP) to identify ' | |
'the optimal alpha value, preventing overfitting while maintaining high predictive accuracy.</p>', | |
unsafe_allow_html=True | |
) | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Performance metrics section with cards | |
st.markdown('<div class="about-section">', unsafe_allow_html=True) | |
st.markdown('<h2 class="section-header">Model Performance Metrics</h2>', unsafe_allow_html=True) | |
# Metrics cards using HTML for better styling | |
st.markdown( | |
'<div class="metrics-container">' | |
' <div class="metric-card">' | |
' <div class="metric-value">83.61%</div>' | |
' <div class="metric-label">Accuracy</div>' | |
' </div>' | |
' <div class="metric-card">' | |
' <div class="metric-value">80.77%</div>' | |
' <div class="metric-label">Precision</div>' | |
' </div>' | |
' <div class="metric-card">' | |
' <div class="metric-value">100.00%</div>' | |
' <div class="metric-label">Recall</div>' | |
' </div>' | |
' <div class="metric-card">' | |
' <div class="metric-value">89.36%</div>' | |
' <div class="metric-label">F1 Score</div>' | |
' </div>' | |
'</div>', | |
unsafe_allow_html=True | |
) | |
# Link to documentation/more info | |
st.markdown( | |
'<p class="about-text">For more information about the modeling process (from loading the dataset to fine-tuning ' | |
'the model), check here: <a href="https://github.com/ifiecas/bankloan2" target="_blank" style="color: #2563eb;">Github</a></p>', | |
unsafe_allow_html=True | |
) | |
# YouTube video section | |
st.markdown('<h2 class="section-header">Brief Explanation</h2>', unsafe_allow_html=True) | |
st.markdown('<p class="about-text">Watch this video for a brief explanation of the assessment:</p>', unsafe_allow_html=True) | |
# YouTube embed with responsive container | |
st.markdown(""" | |
<div style="position: relative; padding-bottom: 56.25%; height: 0; overflow: hidden; margin-bottom: 20px;"> | |
<iframe | |
style="position: absolute; top: 0; left: 0; width: 100%; height: 100%;" | |
src="https://www.youtube.com/embed/f4a85SYTUQs?autoplay=1&vq=hd1080&rel=0&modestbranding=1" | |
title="Assessment Explanation" | |
frameborder="0" | |
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" | |
allowfullscreen> | |
</iframe> | |
</div> | |
""", unsafe_allow_html=True) | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Author section with profile | |
st.markdown('<div class="about-section">', unsafe_allow_html=True) | |
st.markdown('<h2 class="section-header">Behind the Build</h2>', unsafe_allow_html=True) | |
st.markdown( | |
'<div class="author-bio">' | |
' <div class="author-image">IF</div>' | |
' <div>' | |
' <p style="margin: 0; font-weight: 600; color: #1f2937;">Ivy Fiecas-Borjal</p>' | |
' <p style="margin: 0; font-size: 14px; color: #6b7280;">Building with AI & ML | Biz Dev in Tech</p>' | |
' <p style="margin-top: 5px; font-size: 14px;">' | |
' <a href="https://ifiecas.com/" target="_blank" style="color: #2563eb; text-decoration: none;">Visit Portfolio</a>' | |
' </p>' | |
' </div>' | |
'</div>', | |
unsafe_allow_html=True | |
) | |
st.markdown( | |
'<p class="about-text">Inspired by an assessment in BCO6008 Predictive Analytics class in Victoria University ' | |
'(Melbourne) with Dr. Omid Ameri Sianaki. Enjoyed doing this and learned a lot! 😊</p>', | |
unsafe_allow_html=True | |
) | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Disclaimer footer | |
st.markdown("""<div class="footer-disclaimer"> | |
<p><strong>Educational Project Disclaimer:</strong> This application is a prototype created to demonstrate machine learning model deployment and is not an actual financial service. The loan approval decisions are based on a trained model for educational purposes only and should not be used for real financial decisions.</p> | |
<p>© 2025 SmartLoanAI - Machine Learning Showcase Project</p> | |
</div>""", unsafe_allow_html=True) |