Spaces:
Running
Running
File size: 19,945 Bytes
143340f b6fcc7d 651cf86 b6fcc7d 651cf86 b6fcc7d 651cf86 b6fcc7d 651cf86 b6fcc7d b771194 b6fcc7d 5fc3fc3 b6fcc7d 651cf86 b6fcc7d 651cf86 b6fcc7d 651cf86 b6fcc7d 651cf86 5fc3fc3 b6fcc7d 42691c2 b6fcc7d 651cf86 5fc3fc3 b6fcc7d 651cf86 b6fcc7d 651cf86 b6fcc7d 4522e90 b6fcc7d 4dd3861 4522e90 b6fcc7d 651cf86 b6fcc7d 91e15d8 b6fcc7d 651cf86 b6fcc7d 651cf86 b6fcc7d 651cf86 b6fcc7d 651cf86 b6fcc7d 651cf86 b6fcc7d 4dd3861 b6fcc7d 651cf86 5fc3fc3 b6fcc7d 651cf86 b6fcc7d 651cf86 5fc3fc3 b6fcc7d 651cf86 b6fcc7d 306fcc4 b6fcc7d e05c734 b6fcc7d e05c734 b6fcc7d 45e0866 b6fcc7d e05c734 b6fcc7d e05c734 b6fcc7d e05c734 b6fcc7d e05c734 b6fcc7d 5fc3fc3 b6fcc7d 45e0866 b6fcc7d 5fc3fc3 b6fcc7d e05c734 b6fcc7d c07e845 b6fcc7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
import streamlit as st
import joblib
import numpy as np
from huggingface_hub import hf_hub_download
# Page configuration
st.set_page_config(
page_title="Loan Approval System",
page_icon="🏦",
layout="centered",
initial_sidebar_state="collapsed"
)
# Custom CSS for styling with the specified color theme
st.markdown("""
<style>
/* Color Theme */
:root {
--primary-purple: #7950F2;
--primary-purple-light: #9775F3;
--primary-purple-dark: #5F3DC4;
--complementary-orange: #FF5E3A;
--complementary-orange-light: #FF8A6C;
--light-gray: #F8F9FA;
--dark-gray: #343A40;
}
/* Main containers */
.main .block-container {
padding: 2rem;
border-radius: 10px;
background-color: white;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
}
/* Font family - applied globally */
* {
font-family: 'Helvetica', 'Arial', sans-serif !important;
}
/* Specific selectors to ensure Helvetica is applied everywhere */
body, .stMarkdown, p, h1, h2, h3, h4, h5, h6, .stButton, .stSelectbox, .stNumberInput,
.stTextInput, div, span, .streamlit-container, .stAlert, .stText, button, input, select,
textarea, .streamlit-expanderHeader, .streamlit-expanderContent {
font-family: 'Helvetica', 'Arial', sans-serif !important;
}
/* Headers */
h1, h2, h3 {
color: var(--primary-purple-dark);
}
/* Custom cards for sections */
.section-card {
background-color: var(--light-gray);
border-radius: 8px;
padding: 1.5rem;
margin-bottom: 1.5rem;
border-left: 4px solid var(--primary-purple);
}
/* Remove purple left border from the first section card */
.remove-border {
border-left: none !important;
}
/* Button styling */
.stButton > button {
background-color: var(--primary-purple);
color: white;
border: none;
border-radius: 5px;
padding: 0.5rem 1rem;
font-weight: bold;
width: 100%;
transition: all 0.3s;
}
.stButton > button:hover {
background-color: var(--primary-purple-dark);
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
/* Result styling */
.result-approved {
background-color: #E8F5E9;
border-left: 4px solid #4CAF50;
padding: 1rem;
border-radius: 5px;
margin-top: 1rem;
}
.result-rejected {
background-color: #FFEBEE;
border-left: 4px solid #F44336;
padding: 1rem;
border-radius: 5px;
margin-top: 1rem;
}
/* Input widgets */
.stNumberInput, .stSelectbox {
margin-bottom: 1rem;
}
/* Footer */
.footer {
text-align: center;
margin-top: 2rem;
padding-top: 1rem;
border-top: 1px solid #EEEEEE;
font-size: 0.8rem;
color: #666666;
}
/* Divider */
.divider {
border-top: 1px solid #EEEEEE;
margin: 1.5rem 0;
}
/* Badge */
.badge {
display: inline-block;
background-color: var(--complementary-orange);
color: white;
padding: 0.25rem 0.5rem;
border-radius: 4px;
font-size: 0.8rem;
margin-left: 0.5rem;
}
/* Banner image styling */
.banner-image {
width: 100%;
margin-bottom: 1.5rem;
border-radius: 10px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
}
/* Footer disclaimer */
.footer-disclaimer {
text-align: center;
margin-top: 2rem;
padding: 1rem;
border-top: 1px solid #EEEEEE;
font-size: 0.9rem;
color: #666666;
line-height: 1.5;
background-color: var(--light-gray);
border-radius: 5px;
}
</style>
""", unsafe_allow_html=True)
# App header with banner image instead of title
st.markdown('<img src="https://i.postimg.cc/R0gGW9kb/ACTION-PLAN.png" class="banner-image" alt="SmartLoanAI Banner">', unsafe_allow_html=True)
# Load the trained model from Hugging Face
@st.cache_resource
def load_model():
model_path = hf_hub_download(repo_id="ifiecas/LoanApproval-DT-v1.0", filename="best_pruned_dt.pkl")
return joblib.load(model_path)
model = load_model()
# Initialize session state for restart functionality
if 'restart_clicked' not in st.session_state:
st.session_state.restart_clicked = False
# Create tabs for better organization
tab1, tab2 = st.tabs(["Loan Application", "About the System"])
with tab1:
# Reset all form values if restart was clicked
if st.session_state.restart_clicked:
st.session_state.restart_clicked = False # Reset flag
# Personal Information Section
st.markdown('<div class="section-card"><h3>Personal Information</h3>', unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
gender = st.selectbox("Gender", ["Male", "Female"])
education = st.selectbox("Education Level", ["Graduate", "Under Graduate"])
with col2:
marital_status = st.selectbox("Marital Status", ["Married", "Not Married"])
number_of_dependents = st.number_input("Number of Dependents", min_value=0, max_value=10, value=0)
self_employed = st.selectbox("Self-Employed", ["No", "Yes"])
st.markdown('</div>', unsafe_allow_html=True)
# Financial Details Section
st.markdown('<div class="section-card"><h3>Financial Details</h3>', unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
applicant_income = st.number_input("Monthly Income ($)", min_value=0, value=5000)
loan_amount = st.number_input("Loan Amount ($)", min_value=0, value=100000)
credit_history = st.selectbox("Credit History Status", [1, 0],
format_func=lambda x: "No existing unsettled loans (1)" if x == 1 else "Have unsettled loans (0)")
with col2:
coapplicant_income = st.number_input("Co-Applicant's Income ($)", min_value=0)
loan_term = st.slider("Loan Term (months)", min_value=12, max_value=360, value=180, step=12)
location = st.selectbox("Property Location", ["Urban", "Semiurban", "Rural"])
st.markdown('</div>', unsafe_allow_html=True)
# Summary section - without DTI Assessment or Eligibility Check
st.markdown('<div class="section-card"><h3>Application Summary</h3>', unsafe_allow_html=True)
total_income = applicant_income + coapplicant_income
# Calculate monthly payment (simplified calculation)
interest_rate = 0.05 # Assuming 5% annual interest rate
monthly_interest = interest_rate / 12
num_payments = loan_term
# Monthly payment using the loan amortization formula
if monthly_interest == 0 or num_payments == 0:
monthly_payment = 0
else:
monthly_payment = loan_amount * (monthly_interest * (1 + monthly_interest) ** num_payments) / \
((1 + monthly_interest) ** num_payments - 1)
# Calculate DTI for backend use only (not displayed)
dti = (monthly_payment / total_income) if total_income > 0 else 0
dti_percent = dti * 100
# Display summary metrics
col1, col2, col3 = st.columns(3)
col1.metric("Total Monthly Income", f"${total_income:,}")
col2.metric("Estimated Monthly Payment", f"${monthly_payment:.2f}")
col3.metric("Loan Term", f"{loan_term//12} years")
# Add interest rate disclaimer
st.markdown(f"""
<div style="font-size: 0.8rem; color: #666; margin-top: -10px; margin-bottom: 20px;">
* Estimated payment based on {interest_rate*100:.1f}% annual interest rate. Actual rates may vary.
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Prediction and restart buttons
col1, col2 = st.columns([3, 1])
with col1:
predict_button = st.button("Check Loan Approval Status", use_container_width=True)
with col2:
restart_button = st.button("🔄 Restart", use_container_width=True,
help="Reset all form fields and start over")
# Handle restart button click
if restart_button:
st.session_state.restart_clicked = True
st.rerun() # Using st.rerun() instead of st.experimental_rerun()
def preprocess_input():
# Convert categorical inputs to numerical format based on encoding reference
gender_num = 0 if gender == "Male" else 1
marital_status_num = 0 if marital_status == "Not Married" else 1
education_num = 0 if education == "Under Graduate" else 1
self_employed_num = 0 if self_employed == "No" else 1
credit_history_num = credit_history # Already numerical (0,1)
# One-Hot Encoding for Location
location_semiurban = 1 if location == "Semiurban" else 0
location_urban = 1 if location == "Urban" else 0
# Convert Term from months to years
term_years = loan_term / 12
# Compute Derived Features - use the same monthly payment calculated above
debt_to_income = monthly_payment / total_income if total_income > 0 else 0
credit_amount_interaction = loan_amount * credit_history_num # Interaction effect
income_term_ratio = total_income / term_years if term_years > 0 else 0 # Avoid divide by zero
# Return array with all 16 features
return np.array([[
gender_num, marital_status_num, number_of_dependents, education_num, self_employed_num,
applicant_income, coapplicant_income, loan_amount, credit_history_num,
total_income, debt_to_income, location_semiurban, location_urban, term_years,
credit_amount_interaction, income_term_ratio
]])
# Display prediction
if predict_button:
with st.spinner("Processing your application..."):
input_data = preprocess_input()
prediction = model.predict(input_data)
# Apply additional rules to override the model in certain cases (backend only)
manual_rejection = False
# Rule-based rejections that override the model (but don't show to user)
if total_income < 1500:
manual_rejection = True
elif dti_percent > 50:
manual_rejection = True
elif credit_history == 0 and dti_percent > 35:
manual_rejection = True
# Final decision combines model prediction and manual eligibility checks
final_approval = (prediction[0] == 1) and not manual_rejection
# Show result with enhanced styling
if final_approval:
st.markdown("""
<div class="result-approved">
<h3 style="color: #2E7D32;">✅ Loan Approved</h3>
<p>Congratulations! Based on your information, you're eligible for this loan.</p>
</div>
""", unsafe_allow_html=True)
else:
st.markdown("""
<div class="result-rejected">
<h3 style="color: #C62828;">❌ Loan Not Approved</h3>
<p>Unfortunately, based on your current information, we cannot approve your loan application.</p>
<p>Consider improving your credit score, reducing existing debt, or applying with a co-applicant with higher income.</p>
</div>
""", unsafe_allow_html=True)
with tab2:
# Add custom CSS for better styling
st.markdown("""
<style>
/* Main container styling */
.about-container {
background-color: #f8f9fa;
border-radius: 10px;
padding: 20px;
margin-bottom: 20px;
}
/* Section styling */
.about-section {
margin-bottom: 25px;
}
/* Section headers */
.section-header {
color: #1e3a8a;
font-size: 20px;
font-weight: 600;
margin-bottom: 10px;
border-bottom: 2px solid #e5e7eb;
padding-bottom: 5px;
}
/* Regular text */
.about-text {
font-size: 16px;
line-height: 1.6;
color: #374151;
}
/* Metrics card container */
.metrics-container {
display: flex;
flex-wrap: wrap;
gap: 15px;
margin: 15px 0;
}
/* Individual metric card */
.metric-card {
background-color: white;
border-radius: 8px;
padding: 15px;
min-width: 120px;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
flex: 1;
text-align: center;
}
/* Metric value */
.metric-value {
font-size: 22px;
font-weight: 600;
color: #2563eb;
}
/* Metric label */
.metric-label {
font-size: 14px;
color: #6b7280;
margin-top: 5px;
}
/* Footer styling */
.footer-disclaimer {
background-color: #f3f4f6;
border-radius: 8px;
padding: 15px;
margin-top: 30px;
border-left: 4px solid #9ca3af;
font-size: 14px;
color: #4b5563;
}
/* Author bio section */
.author-bio {
display: flex;
align-items: center;
gap: 15px;
background-color: white;
border-radius: 8px;
padding: 15px;
margin: 20px 0;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
/* Author image placeholder */
.author-image {
width: 60px;
height: 60px;
border-radius: 50%;
background-color: #e5e7eb;
display: flex;
align-items: center;
justify-content: center;
color: #9ca3af;
font-size: 20px;
font-weight: bold;
}
</style>
""", unsafe_allow_html=True)
# Main content container
st.markdown('<div class="about-container">', unsafe_allow_html=True)
# System overview section
st.markdown('<div class="about-section">', unsafe_allow_html=True)
st.markdown('<h2 class="section-header">About the Loan Approval System</h2>', unsafe_allow_html=True)
st.markdown(
'<p class="about-text">This prototype evaluates loan applications using machine learning and '
'industry-standard criteria. It analyzes financial information, credit history, and loan requirements'
'to provide fast, objective loan decisions.</p>', unsafe_allow_html=True
)
st.markdown('</div>', unsafe_allow_html=True)
# Model information section
st.markdown('<div class="about-section">', unsafe_allow_html=True)
st.markdown('<h2 class="section-header">About the ML Model</h2>', unsafe_allow_html=True)
st.markdown(
'<p class="about-text">The machine learning model powering this system is a Decision Tree classifier, '
'which outperformed several alternatives including KNN, Random Forest, Logistic Regression, and Support '
'Vector Machine in our testing phase. The model was refined using Cost Complexity Pruning (CCP) to identify '
'the optimal alpha value, preventing overfitting while maintaining high predictive accuracy.</p>',
unsafe_allow_html=True
)
st.markdown('</div>', unsafe_allow_html=True)
# Performance metrics section with cards
st.markdown('<div class="about-section">', unsafe_allow_html=True)
st.markdown('<h2 class="section-header">Model Performance Metrics</h2>', unsafe_allow_html=True)
# Metrics cards using HTML for better styling
st.markdown(
'<div class="metrics-container">'
' <div class="metric-card">'
' <div class="metric-value">83.61%</div>'
' <div class="metric-label">Accuracy</div>'
' </div>'
' <div class="metric-card">'
' <div class="metric-value">80.77%</div>'
' <div class="metric-label">Precision</div>'
' </div>'
' <div class="metric-card">'
' <div class="metric-value">100.00%</div>'
' <div class="metric-label">Recall</div>'
' </div>'
' <div class="metric-card">'
' <div class="metric-value">89.36%</div>'
' <div class="metric-label">F1 Score</div>'
' </div>'
'</div>',
unsafe_allow_html=True
)
# Link to documentation/more info
st.markdown(
'<p class="about-text">For more information about the modeling process (from loading the dataset to fine-tuning '
'the model), check here: <a href="https://github.com/ifiecas/bankloan2" target="_blank" style="color: #2563eb;">Github</a></p>',
unsafe_allow_html=True
)
# YouTube video section
st.markdown('<h2 class="section-header">Brief Explanation</h2>', unsafe_allow_html=True)
st.markdown('<p class="about-text">Watch this video for a brief explanation of the assessment:</p>', unsafe_allow_html=True)
# YouTube embed with responsive container
st.markdown("""
<div style="position: relative; padding-bottom: 56.25%; height: 0; overflow: hidden; margin-bottom: 20px;">
<iframe
style="position: absolute; top: 0; left: 0; width: 100%; height: 100%;"
src="https://www.youtube.com/embed/f4a85SYTUQs?autoplay=1&vq=hd1080&rel=0&modestbranding=1"
title="Assessment Explanation"
frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen>
</iframe>
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Author section with profile
st.markdown('<div class="about-section">', unsafe_allow_html=True)
st.markdown('<h2 class="section-header">Behind the Build</h2>', unsafe_allow_html=True)
st.markdown(
'<div class="author-bio">'
' <div class="author-image">IF</div>'
' <div>'
' <p style="margin: 0; font-weight: 600; color: #1f2937;">Ivy Fiecas-Borjal</p>'
' <p style="margin: 0; font-size: 14px; color: #6b7280;">Building with AI & ML | Biz Dev in Tech</p>'
' <p style="margin-top: 5px; font-size: 14px;">'
' <a href="https://ifiecas.com/" target="_blank" style="color: #2563eb; text-decoration: none;">Visit Portfolio</a>'
' </p>'
' </div>'
'</div>',
unsafe_allow_html=True
)
st.markdown(
'<p class="about-text">Inspired by an assessment in BCO6008 Predictive Analytics class in Victoria University '
'(Melbourne) with Dr. Omid Ameri Sianaki. Enjoyed doing this and learned a lot! 😊</p>',
unsafe_allow_html=True
)
st.markdown('</div>', unsafe_allow_html=True)
# Disclaimer footer
st.markdown("""<div class="footer-disclaimer">
<p><strong>Educational Project Disclaimer:</strong> This application is a prototype created to demonstrate machine learning model deployment and is not an actual financial service. The loan approval decisions are based on a trained model for educational purposes only and should not be used for real financial decisions.</p>
<p>© 2025 SmartLoanAI - Machine Learning Showcase Project</p>
</div>""", unsafe_allow_html=True) |