SmartLoanAI / app.py
ifiecas's picture
Update app.py
4edfc10 verified
raw
history blame
27.2 kB
import streamlit as st
import joblib
import numpy as np
from huggingface_hub import hf_hub_download
# Page configuration
st.set_page_config(
page_title="Loan Approval System",
page_icon="🏦",
layout="wide", # Changed from "centered" to "wide" for better use of space
initial_sidebar_state="collapsed"
)
# Custom CSS for styling with the specified color theme
st.markdown("""
<style>
/* Color Theme */
:root {
--primary-purple: #7950F2;
--primary-purple-light: #9775F3;
--primary-purple-dark: #5F3DC4;
--complementary-orange: #FF5E3A;
--complementary-orange-light: #FF8A6C;
--light-gray: #F8F9FA;
--dark-gray: #343A40;
}
/* Main containers */
.main .block-container {
padding: 2rem;
border-radius: 10px;
background-color: white;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
max-width: 1200px;
margin: 0 auto;
}
/* Font family - applied globally */
* {
font-family: 'Helvetica', 'Arial', sans-serif !important;
}
/* Specific selectors to ensure Helvetica is applied everywhere */
body, .stMarkdown, p, h1, h2, h3, h4, h5, h6, .stButton, .stSelectbox, .stNumberInput,
.stTextInput, div, span, .streamlit-container, .stAlert, .stText, button, input, select,
textarea, .streamlit-expanderHeader, .streamlit-expanderContent {
font-family: 'Helvetica', 'Arial', sans-serif !important;
}
/* Headers */
h1, h2, h3 {
color: var(--primary-purple-dark);
}
/* Custom cards for sections */
.section-card {
background-color: var(--light-gray);
border-radius: 8px;
padding: 1.5rem;
margin-bottom: 1.5rem;
border-left: 4px solid var(--primary-purple);
transition: all 0.3s ease;
}
.section-card:hover {
box-shadow: 0 6px 12px rgba(0, 0, 0, 0.08);
transform: translateY(-2px);
}
/* Remove purple left border from the first section card */
.remove-border {
border-left: none !important;
}
/* Button styling */
.stButton > button {
background-color: var(--primary-purple);
color: white;
border: none;
border-radius: 5px;
padding: 0.5rem 1rem;
font-weight: bold;
width: 100%;
transition: all 0.3s;
}
.stButton > button:hover {
background-color: var(--primary-purple-dark);
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
/* Result styling */
.result-approved {
background-color: #E8F5E9;
border-left: 4px solid #4CAF50;
padding: 1.5rem;
border-radius: 5px;
margin-top: 1.5rem;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.05);
transition: all 0.3s ease;
}
.result-rejected {
background-color: #FFEBEE;
border-left: 4px solid #F44336;
padding: 1.5rem;
border-radius: 5px;
margin-top: 1.5rem;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.05);
transition: all 0.3s ease;
}
/* Input widgets */
.stNumberInput, .stSelectbox {
margin-bottom: 1rem;
}
/* Footer */
.footer {
text-align: center;
margin-top: 2rem;
padding-top: 1rem;
border-top: 1px solid #EEEEEE;
font-size: 0.8rem;
color: #666666;
}
/* Divider */
.divider {
border-top: 1px solid #EEEEEE;
margin: 1.5rem 0;
}
/* Badge */
.badge {
display: inline-block;
background-color: var(--complementary-orange);
color: white;
padding: 0.25rem 0.5rem;
border-radius: 4px;
font-size: 0.8rem;
margin-left: 0.5rem;
}
/* Banner image styling */
.banner-image {
width: 100%;
margin-bottom: 1.5rem;
border-radius: 10px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
transition: all 0.3s ease;
}
.banner-image:hover {
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.15);
}
/* Footer disclaimer */
.footer-disclaimer {
text-align: center;
margin-top: 2rem;
padding: 1.5rem;
border-top: 1px solid #EEEEEE;
font-size: 0.9rem;
color: #666666;
line-height: 1.5;
background-color: var(--light-gray);
border-radius: 5px;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05);
}
/* Tabs styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
}
.stTabs [data-baseweb="tab"] {
background-color: white;
border-radius: 4px 4px 0 0;
padding: 10px 16px;
height: auto;
}
.stTabs [aria-selected="true"] {
background-color: var(--primary-purple-light) !important;
color: white !important;
font-weight: bold;
}
/* Improved form inputs */
div[data-testid="stFormSubmit"] > button {
background-color: var(--primary-purple);
color: white;
}
/* Tooltip improvements */
div[data-baseweb="tooltip"] {
background-color: var(--dark-gray);
border-radius: 4px;
padding: 8px;
font-size: 14px;
}
/* Metrics styling */
[data-testid="stMetric"] {
background-color: white;
border-radius: 8px;
padding: 1rem;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05);
transition: all 0.2s ease;
}
[data-testid="stMetric"]:hover {
transform: translateY(-3px);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
[data-testid="stMetricLabel"] {
color: var(--primary-purple-dark);
}
[data-testid="stMetricValue"] {
font-weight: bold;
font-size: 1.5rem !important;
color: var(--primary-purple);
}
/* Animation for loading */
@keyframes pulse {
0% { opacity: 0.6; }
50% { opacity: 1; }
100% { opacity: 0.6; }
}
.loading-pulse {
animation: pulse 1.5s infinite ease-in-out;
}
</style>
""", unsafe_allow_html=True)
# App header with banner image instead of title
st.markdown('<img src="https://i.postimg.cc/R0gGW9kb/ACTION-PLAN.png" class="banner-image" alt="SmartLoanAI Banner">', unsafe_allow_html=True)
# Load the trained model from Hugging Face
@st.cache_resource
def load_model():
model_path = hf_hub_download(repo_id="ifiecas/LoanApproval-DT-v1.0", filename="best_pruned_dt.pkl")
return joblib.load(model_path)
model = load_model()
# Initialize session state for restart functionality
if 'restart_clicked' not in st.session_state:
st.session_state.restart_clicked = False
# Global disclaimer at the top
st.markdown("""<div class="footer-disclaimer" style="margin-bottom: 20px; background-color: #fff3cd; border-left: 4px solid #ffc107;">
<p><strong>Educational Project Disclaimer:</strong> This application is a prototype created to demonstrate machine learning model deployment and is not an actual financial service. The loan approval decisions are based on a trained model for educational purposes only and should not be used for real financial decisions.</p>
</div>""", unsafe_allow_html=True)
# Create tabs for better organization
tab1, tab2 = st.tabs(["📝 Loan Application", "ℹ️ About the System"])
with tab1:
# Reset all form values if restart was clicked
if st.session_state.restart_clicked:
st.session_state.restart_clicked = False # Reset flag
# Introduction text
st.markdown("""
<h2 style="text-align: center; color: var(--primary-purple-dark); margin-bottom: 20px;">
Smart Loan Application System
</h2>
<p style="text-align: center; margin-bottom: 30px; font-size: 1.1rem;">
Fill out the form below to check your loan eligibility. Our AI system will analyze your information and provide an instant decision.
</p>
""", unsafe_allow_html=True)
# Personal Information Section
st.markdown('<div class="section-card"><h3>👤 Personal Information</h3>', unsafe_allow_html=True)
col1, col2, col3 = st.columns(3)
with col1:
gender = st.selectbox("Gender", ["Male", "Female"])
number_of_dependents = st.number_input("Number of Dependents", min_value=0, max_value=10, value=0,
help="Number of people dependent on the applicant's income")
with col2:
marital_status = st.selectbox("Marital Status", ["Married", "Not Married"])
self_employed = st.selectbox("Self-Employed", ["No", "Yes"],
help="Whether the applicant is self-employed or works for an organization")
with col3:
education = st.selectbox("Education Level", ["Graduate", "Under Graduate"],
help="Higher education status of the applicant")
st.markdown('</div>', unsafe_allow_html=True)
# Financial Details Section
st.markdown('<div class="section-card"><h3>💰 Financial Details</h3>', unsafe_allow_html=True)
col1, col2, col3 = st.columns(3)
with col1:
applicant_income = st.number_input("Monthly Income ($)", min_value=0, value=5000,
help="Applicant's monthly income in dollars")
credit_history = st.selectbox("Credit History Status", [1, 0],
format_func=lambda x: "Good Credit History (1)" if x == 1 else "Poor Credit History (0)",
help="1 indicates no existing unsettled loans, 0 indicates having unsettled loans")
with col2:
coapplicant_income = st.number_input("Co-Applicant's Income ($)", min_value=0,
help="Co-applicant's monthly income in dollars (if applicable)")
location = st.selectbox("Property Location", ["Urban", "Semiurban", "Rural"],
help="The location where the property is situated")
with col3:
loan_amount = st.number_input("Loan Amount ($)", min_value=0, value=100000,
help="The amount of loan requested in dollars")
loan_term = st.slider("Loan Term (months)", min_value=12, max_value=360, value=180, step=12,
help="Duration of the loan in months")
st.markdown('</div>', unsafe_allow_html=True)
# Summary section with improved visualization
st.markdown('<div class="section-card"><h3>📊 Application Summary</h3>', unsafe_allow_html=True)
total_income = applicant_income + coapplicant_income
# Calculate monthly payment (simplified calculation)
interest_rate = 0.05 # Assuming 5% annual interest rate
monthly_interest = interest_rate / 12
num_payments = loan_term
# Monthly payment using the loan amortization formula
if monthly_interest == 0 or num_payments == 0:
monthly_payment = 0
else:
monthly_payment = loan_amount * (monthly_interest * (1 + monthly_interest) ** num_payments) / \
((1 + monthly_interest) ** num_payments - 1)
# Calculate DTI for backend use only (not displayed initially)
dti = (monthly_payment / total_income) if total_income > 0 else 0
dti_percent = dti * 100
# Display summary metrics
col1, col2, col3, col4 = st.columns(4)
col1.metric("Total Monthly Income", f"${total_income:,}")
col2.metric("Estimated Monthly Payment", f"${monthly_payment:.2f}")
col3.metric("Loan Term", f"{loan_term//12} years")
col4.metric("Debt-to-Income Ratio", f"{dti_percent:.1f}%",
delta="-" if dti_percent < 36 else f"{dti_percent - 36:.1f}%",
delta_color="normal" if dti_percent < 36 else "inverse")
# Add interest rate disclaimer
st.markdown(f"""
<div style="font-size: 0.9rem; color: #666; margin-top: 10px; margin-bottom: 20px; background-color: #f8f9fa; padding: 10px; border-radius: 5px;">
<strong>Note:</strong> Estimated payment based on {interest_rate*100:.1f}% annual interest rate. Actual rates may vary based on credit score and market conditions.
<br>A healthy debt-to-income ratio is typically below 36%.
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Prediction and restart buttons
col1, col2 = st.columns([3, 1])
with col1:
predict_button = st.button("🔍 Check Loan Approval Status", use_container_width=True)
with col2:
restart_button = st.button("🔄 Reset Form", use_container_width=True,
help="Clear all inputs and start over")
# Handle restart button click
if restart_button:
st.session_state.restart_clicked = True
st.rerun()
def preprocess_input():
# Convert categorical inputs to numerical format based on encoding reference
gender_num = 0 if gender == "Male" else 1
marital_status_num = 0 if marital_status == "Not Married" else 1
education_num = 0 if education == "Under Graduate" else 1
self_employed_num = 0 if self_employed == "No" else 1
credit_history_num = credit_history # Already numerical (0,1)
# One-Hot Encoding for Location
location_semiurban = 1 if location == "Semiurban" else 0
location_urban = 1 if location == "Urban" else 0
# Convert Term from months to years
term_years = loan_term / 12
# Compute Derived Features - use the same monthly payment calculated above
debt_to_income = monthly_payment / total_income if total_income > 0 else 0
credit_amount_interaction = loan_amount * credit_history_num # Interaction effect
income_term_ratio = total_income / term_years if term_years > 0 else 0 # Avoid divide by zero
# Return array with all 16 features
return np.array([[
gender_num, marital_status_num, number_of_dependents, education_num, self_employed_num,
applicant_income, coapplicant_income, loan_amount, credit_history_num,
total_income, debt_to_income, location_semiurban, location_urban, term_years,
credit_amount_interaction, income_term_ratio
]])
# Display prediction with enhanced visualization
if predict_button:
with st.spinner("Processing your application..."):
st.markdown("""
<div class="loading-pulse" style="text-align: center; margin: 20px 0;">
<p style="font-size: 1.1rem;">Analyzing your application data...</p>
</div>
""", unsafe_allow_html=True)
input_data = preprocess_input()
prediction = model.predict(input_data)
# Apply additional rules to override the model in certain cases (backend only)
manual_rejection = False
rejection_reason = ""
# Rule-based rejections that override the model
if total_income < 1500:
manual_rejection = True
rejection_reason = "Insufficient total income (minimum $1,500 required)"
elif dti_percent > 50:
manual_rejection = True
rejection_reason = "Debt-to-income ratio too high (exceeds 50%)"
elif credit_history == 0 and dti_percent > 35:
manual_rejection = True
rejection_reason = "Poor credit history combined with high debt-to-income ratio"
# Final decision combines model prediction and manual eligibility checks
final_approval = (prediction[0] == 1) and not manual_rejection
# Show result with enhanced styling
if final_approval:
st.markdown("""
<div class="result-approved">
<h3 style="color: #2E7D32; margin-top: 0;">✅ Loan Approved</h3>
<p style="font-size: 1.1rem;">Congratulations! Based on your information, you're eligible for this loan.</p>
<p>Our AI model has determined that your application meets our criteria for approval. Here's what happens next:</p>
<ol>
<li>Verification of the submitted information</li>
<li>Final loan terms proposal</li>
<li>Document signing and disbursement</li>
</ol>
<p><em>In a real application, you would receive further instructions on next steps.</em></p>
</div>
""", unsafe_allow_html=True)
else:
st.markdown(f"""
<div class="result-rejected">
<h3 style="color: #C62828; margin-top: 0;">❌ Loan Not Approved</h3>
<p style="font-size: 1.1rem;">Unfortunately, based on your current information, we cannot approve your loan application.</p>
<p><strong>Potential factors affecting the decision:</strong></p>
<ul>
<li>{rejection_reason if rejection_reason else "The combination of factors in your application does not meet our current criteria"}</li>
<li>Income to loan amount ratio may be insufficient</li>
<li>Credit history concerns</li>
</ul>
<p><strong>Suggestions for improvement:</strong></p>
<ul>
<li>Consider improving your credit score</li>
<li>Reduce existing debt before reapplying</li>
<li>Apply with a co-applicant with higher income</li>
<li>Request a lower loan amount or longer term</li>
</ul>
</div>
""", unsafe_allow_html=True)
# Add disclaimer at the bottom of tab1 as well
st.markdown("""<div class="footer-disclaimer">
<p><strong>Educational Project Disclaimer:</strong> This application is a prototype created to demonstrate machine learning model deployment and is not an actual financial service. The loan approval decisions are based on a trained model for educational purposes only and should not be used for real financial decisions.</p>
<p>© 2025 SmartLoanAI - Machine Learning Showcase Project</p>
</div>""", unsafe_allow_html=True)
with tab2:
# Add custom CSS to make font sizes consistent
st.markdown("""
<style>
/* Make all text in the About tab the same size */
[data-testid="stAppViewContainer"] .stTabs [aria-label="About the System"] p,
[data-testid="stAppViewContainer"] .stTabs [aria-label="About the System"] li {
font-size: 16px !important;
line-height: 1.5 !important;
}
/* Main container styling */
.about-container {
background-color: #f8f9fa;
border-radius: 10px;
padding: 20px;
margin-bottom: 20px;
}
/* Section styling */
.about-section {
margin-bottom: 25px;
}
/* Section headers */
.section-header {
color: #1e3a8a;
font-size: 20px;
font-weight: 600;
margin-bottom: 10px;
border-bottom: 2px solid #e5e7eb;
padding-bottom: 5px;
}
/* Regular text */
.about-text {
font-size: 16px;
line-height: 1.6;
color: #374151;
}
/* Metrics card container */
.metrics-container {
display: flex;
flex-wrap: wrap;
gap: 15px;
margin: 15px 0;
}
/* Individual metric card */
.metric-card {
background-color: white;
border-radius: 8px;
padding: 15px;
min-width: 120px;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
flex: 1;
text-align: center;
}
/* Metric value */
.metric-value {
font-size: 22px;
font-weight: 600;
color: #2563eb;
}
/* Metric label */
.metric-label {
font-size: 14px;
color: #6b7280;
margin-top: 5px;
}
/* Footer styling */
.footer-disclaimer {
background-color: #f3f4f6;
border-radius: 8px;
padding: 15px;
margin-top: 30px;
border-left: 4px solid #9ca3af;
font-size: 14px;
color: #4b5563;
}
/* Author bio section */
.author-bio {
display: flex;
align-items: center;
gap: 15px;
background-color: white;
border-radius: 8px;
padding: 15px;
margin: 20px 0;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
/* Author image placeholder */
.author-image {
width: 60px;
height: 60px;
border-radius: 50%;
background-color: #e5e7eb;
display: flex;
align-items: center;
justify-content: center;
color: #9ca3af;
font-size: 20px;
font-weight: bold;
}
</style>
""", unsafe_allow_html=True)
# Main content container
st.markdown('<div class="about-container">', unsafe_allow_html=True)
# System overview section
st.markdown('<div class="about-section">', unsafe_allow_html=True)
st.markdown('<h2 class="section-header">About the Loan Approval System</h2>', unsafe_allow_html=True)
st.markdown(
'<p class="about-text">Our AI-powered system evaluates loan applications using machine learning and '
'industry-standard criteria. It analyzes your financial information, credit history, and loan requirements '
'to provide fast, objective loan decisions.</p>', unsafe_allow_html=True
)
st.markdown('</div>', unsafe_allow_html=True)
# Model information section
st.markdown('<div class="about-section">', unsafe_allow_html=True)
st.markdown('<h2 class="section-header">About the ML Model</h2>', unsafe_allow_html=True)
st.markdown(
'<p class="about-text">The machine learning model powering this system is a Decision Tree classifier, '
'which outperformed several alternatives including KNN, Random Forest, Logistic Regression, and Support '
'Vector Machine in our testing phase. The model was refined using Cost Complexity Pruning (CCP) to identify '
'the optimal alpha value, preventing overfitting while maintaining high predictive accuracy.</p>',
unsafe_allow_html=True
)
st.markdown('</div>', unsafe_allow_html=True)
# Performance metrics section with cards
st.markdown('<div class="about-section">', unsafe_allow_html=True)
st.markdown('<h2 class="section-header">Model Performance Metrics</h2>', unsafe_allow_html=True)
# Metrics cards using HTML for better styling
st.markdown(
'<div class="metrics-container">'
' <div class="metric-card">'
' <div class="metric-value">83.61%</div>'
' <div class="metric-label">Accuracy</div>'
' </div>'
' <div class="metric-card">'
' <div class="metric-value">80.77%</div>'
' <div class="metric-label">Precision</div>'
' </div>'
' <div class="metric-card">'
' <div class="metric-value">100.00%</div>'
' <div class="metric-label">Recall</div>'
' </div>'
' <div class="metric-card">'
' <div class="metric-value">89.36%</div>'
' <div class="metric-label">F1 Score</div>'
' </div>'
'</div>',
unsafe_allow_html=True
)
# Link to documentation/more info
st.markdown(
'<p class="about-text">For more information about the modeling process (from loading the dataset to fine-tuning '
'the model), check here: <a href="https://github.com/ifiecas/bankloan2" target="_blank" style="color: #2563eb;">https://github.com/ifiecas/bankloan2</a></p>',
unsafe_allow_html=True
)
# YouTube video section
st.markdown('<h2 class="section-header">Brief Explanation</h2>', unsafe_allow_html=True)
st.markdown('<p class="about-text">Watch this video for a brief explanation of the assessment:</p>', unsafe_allow_html=True)
# YouTube embed with responsive container
st.markdown("""
<div style="position: relative; padding-bottom: 56.25%; height: 0; overflow: hidden; margin-bottom: 20px;">
<iframe
style="position: absolute; top: 0; left: 0; width: 100%; height: 100%;"
src="https://www.youtube.com/embed/y88GidhkAE8?si=iesfB084u4qrtPB_"
title="Assessment Explanation"
frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen>
</iframe>
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Author section with profile
st.markdown('<div class="about-section">', unsafe_allow_html=True)
st.markdown('<h2 class="section-header">Behind the Build</h2>', unsafe_allow_html=True)
st.markdown(
'<div class="author-bio">'
' <div class="author-image">IF</div>'
' <div>'
' <p style="margin: 0; font-weight: 600; color: #1f2937;">Ivy Fiecas-Borjal</p>'
' <p style="margin: 0; font-size: 14px; color: #6b7280;">Building with AI & ML | Biz Dev in Tech</p>'
' <p style="margin-top: 5px; font-size: 14px;">'
' <a href="https://ifiecas.com/" target="_blank" style="color: #2563eb; text-decoration: none;">Visit Portfolio</a>'
' </p>'
' </div>'
'</div>',
unsafe_allow_html=True
)
st.markdown('<p class="about-text">Inspired by an assessment in BCO6008 Predictive Analytics class in Victoria University (Melbourne) with Dr. Omid Ameri Sianaki. Enjoyed doing this and learned a lot! 😊</p>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Disclaimer footer
st.markdown("""<div class="footer-disclaimer">
<p><strong>Educational Project Disclaimer:</strong> This application is a prototype created to demonstrate machine learning model deployment and is not an actual financial service. The loan approval decisions are based on a trained model for educational purposes only and should not be used for real financial decisions.</p>
<p>© 2025 SmartLoanAI - Machine Learning Showcase Project</p>
</div>""", unsafe_allow_html=True)