File size: 27,221 Bytes
143340f
 
 
 
 
651cf86
 
 
 
a527174
651cf86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a527174
 
651cf86
 
17b02e0
 
 
 
 
 
 
 
 
42691c2
 
 
651cf86
 
 
 
 
 
 
 
 
 
 
 
a527174
 
 
 
 
 
651cf86
 
f8526d6
 
 
 
 
651cf86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a527174
651cf86
a527174
 
 
651cf86
 
 
 
a527174
651cf86
a527174
 
 
651cf86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715968
 
 
 
acd7512
 
 
a527174
 
 
 
 
acd7512
 
 
 
 
 
a527174
acd7512
 
 
 
 
 
a527174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715968
651cf86
 
 
1715968
 
651cf86
143340f
651cf86
 
 
 
 
 
 
b771194
 
 
 
a527174
 
 
 
 
651cf86
a527174
651cf86
 
b771194
 
 
 
a527174
 
 
 
 
 
 
 
 
 
651cf86
a527174
651cf86
a527174
651cf86
 
a527174
 
651cf86
 
 
a527174
 
 
 
 
 
651cf86
 
 
 
a527174
651cf86
a527174
651cf86
a527174
 
42691c2
a527174
 
651cf86
 
a527174
 
 
 
 
 
 
 
 
 
651cf86
 
 
a527174
 
651cf86
 
 
4522e90
 
 
 
 
 
4dd3861
 
4522e90
 
 
 
a527174
4522e90
651cf86
 
91e15d8
a527174
b1a80f7
 
 
a527174
 
 
b1a80f7
91e15d8
6c0b217
a527174
 
 
6c0b217
 
 
651cf86
 
b771194
 
 
 
a527174
b771194
 
a527174
 
651cf86
91e15d8
 
 
a527174
91e15d8
651cf86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dd3861
 
651cf86
 
 
 
 
 
 
 
 
 
 
a527174
651cf86
 
a527174
 
 
 
 
 
651cf86
 
 
91e15d8
4dd3861
a527174
4dd3861
a527174
4dd3861
 
a527174
000931d
4dd3861
a527174
4dd3861
91e15d8
a527174
4dd3861
 
 
 
651cf86
4dd3861
651cf86
 
a527174
 
 
 
 
 
 
 
 
651cf86
 
 
a527174
651cf86
a527174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
651cf86
 
a527174
 
 
 
 
 
651cf86
 
a527174
306fcc4
 
a527174
 
 
 
 
 
 
e05c734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306fcc4
 
 
e05c734
 
 
 
 
 
 
 
 
 
 
 
17b02e0
e05c734
 
 
 
 
 
 
 
 
 
 
17b02e0
e05c734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a527174
e05c734
 
1a163f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e05c734
17b02e0
e05c734
 
 
 
 
 
 
 
 
1a163f0
e05c734
 
 
 
 
 
 
 
24a3b7a
 
 
4edfc10
c07e845
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
import streamlit as st
import joblib
import numpy as np
from huggingface_hub import hf_hub_download

# Page configuration
st.set_page_config(
    page_title="Loan Approval System",
    page_icon="🏦",
    layout="wide",  # Changed from "centered" to "wide" for better use of space
    initial_sidebar_state="collapsed"
)

# Custom CSS for styling with the specified color theme
st.markdown("""
<style>
    /* Color Theme */
    :root {
        --primary-purple: #7950F2;
        --primary-purple-light: #9775F3;
        --primary-purple-dark: #5F3DC4;
        --complementary-orange: #FF5E3A;
        --complementary-orange-light: #FF8A6C;
        --light-gray: #F8F9FA;
        --dark-gray: #343A40;
    }
    
    /* Main containers */
    .main .block-container {
        padding: 2rem;
        border-radius: 10px;
        background-color: white;
        box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
        max-width: 1200px;
        margin: 0 auto;
    }
    
    /* Font family - applied globally */
    * {
        font-family: 'Helvetica', 'Arial', sans-serif !important;
    }
    
    /* Specific selectors to ensure Helvetica is applied everywhere */
    body, .stMarkdown, p, h1, h2, h3, h4, h5, h6, .stButton, .stSelectbox, .stNumberInput,
    .stTextInput, div, span, .streamlit-container, .stAlert, .stText, button, input, select,
    textarea, .streamlit-expanderHeader, .streamlit-expanderContent {
        font-family: 'Helvetica', 'Arial', sans-serif !important;
    }
    
    /* Headers */
    h1, h2, h3 {
        color: var(--primary-purple-dark);
    }
    
    /* Custom cards for sections */
    .section-card {
        background-color: var(--light-gray);
        border-radius: 8px;
        padding: 1.5rem;
        margin-bottom: 1.5rem;
        border-left: 4px solid var(--primary-purple);
        transition: all 0.3s ease;
    }
    
    .section-card:hover {
        box-shadow: 0 6px 12px rgba(0, 0, 0, 0.08);
        transform: translateY(-2px);
    }
    
    /* Remove purple left border from the first section card */
    .remove-border {
        border-left: none !important;
    }
    
    /* Button styling */
    .stButton > button {
        background-color: var(--primary-purple);
        color: white;
        border: none;
        border-radius: 5px;
        padding: 0.5rem 1rem;
        font-weight: bold;
        width: 100%;
        transition: all 0.3s;
    }
    .stButton > button:hover {
        background-color: var(--primary-purple-dark);
        transform: translateY(-2px);
        box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
    }
    
    /* Result styling */
    .result-approved {
        background-color: #E8F5E9;
        border-left: 4px solid #4CAF50;
        padding: 1.5rem;
        border-radius: 5px;
        margin-top: 1.5rem;
        box-shadow: 0 4px 8px rgba(0, 0, 0, 0.05);
        transition: all 0.3s ease;
    }
    .result-rejected {
        background-color: #FFEBEE;
        border-left: 4px solid #F44336;
        padding: 1.5rem;
        border-radius: 5px;
        margin-top: 1.5rem;
        box-shadow: 0 4px 8px rgba(0, 0, 0, 0.05);
        transition: all 0.3s ease;
    }
    
    /* Input widgets */
    .stNumberInput, .stSelectbox {
        margin-bottom: 1rem;
    }
    
    /* Footer */
    .footer {
        text-align: center;
        margin-top: 2rem;
        padding-top: 1rem;
        border-top: 1px solid #EEEEEE;
        font-size: 0.8rem;
        color: #666666;
    }
    
    /* Divider */
    .divider {
        border-top: 1px solid #EEEEEE;
        margin: 1.5rem 0;
    }
    
    /* Badge */
    .badge {
        display: inline-block;
        background-color: var(--complementary-orange);
        color: white;
        padding: 0.25rem 0.5rem;
        border-radius: 4px;
        font-size: 0.8rem;
        margin-left: 0.5rem;
    }
    
    /* Banner image styling */
    .banner-image {
        width: 100%;
        margin-bottom: 1.5rem;
        border-radius: 10px;
        box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
        transition: all 0.3s ease;
    }
    
    .banner-image:hover {
        box-shadow: 0 8px 16px rgba(0, 0, 0, 0.15);
    }
    
    /* Footer disclaimer */
    .footer-disclaimer {
        text-align: center;
        margin-top: 2rem;
        padding: 1.5rem;
        border-top: 1px solid #EEEEEE;
        font-size: 0.9rem;
        color: #666666;
        line-height: 1.5;
        background-color: var(--light-gray);
        border-radius: 5px;
        box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05);
    }
    
    /* Tabs styling */
    .stTabs [data-baseweb="tab-list"] {
        gap: 8px;
    }
    
    .stTabs [data-baseweb="tab"] {
        background-color: white;
        border-radius: 4px 4px 0 0;
        padding: 10px 16px;
        height: auto;
    }
    
    .stTabs [aria-selected="true"] {
        background-color: var(--primary-purple-light) !important;
        color: white !important;
        font-weight: bold;
    }
    
    /* Improved form inputs */
    div[data-testid="stFormSubmit"] > button {
        background-color: var(--primary-purple);
        color: white;
    }
    
    /* Tooltip improvements */
    div[data-baseweb="tooltip"] {
        background-color: var(--dark-gray);
        border-radius: 4px;
        padding: 8px;
        font-size: 14px;
    }
    
    /* Metrics styling */
    [data-testid="stMetric"] {
        background-color: white;
        border-radius: 8px;
        padding: 1rem;
        box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05);
        transition: all 0.2s ease;
    }
    
    [data-testid="stMetric"]:hover {
        transform: translateY(-3px);
        box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
    }
    
    [data-testid="stMetricLabel"] {
        color: var(--primary-purple-dark);
    }
    
    [data-testid="stMetricValue"] {
        font-weight: bold;
        font-size: 1.5rem !important;
        color: var(--primary-purple);
    }
    
    /* Animation for loading */
    @keyframes pulse {
        0% { opacity: 0.6; }
        50% { opacity: 1; }
        100% { opacity: 0.6; }
    }
    
    .loading-pulse {
        animation: pulse 1.5s infinite ease-in-out;
    }
</style>
""", unsafe_allow_html=True)

# App header with banner image instead of title
st.markdown('<img src="https://i.postimg.cc/R0gGW9kb/ACTION-PLAN.png" class="banner-image" alt="SmartLoanAI Banner">', unsafe_allow_html=True)

# Load the trained model from Hugging Face
@st.cache_resource
def load_model():
    model_path = hf_hub_download(repo_id="ifiecas/LoanApproval-DT-v1.0", filename="best_pruned_dt.pkl")
    return joblib.load(model_path)

model = load_model()

# Initialize session state for restart functionality
if 'restart_clicked' not in st.session_state:
    st.session_state.restart_clicked = False

# Global disclaimer at the top
st.markdown("""<div class="footer-disclaimer" style="margin-bottom: 20px; background-color: #fff3cd; border-left: 4px solid #ffc107;">
    <p><strong>Educational Project Disclaimer:</strong> This application is a prototype created to demonstrate machine learning model deployment and is not an actual financial service. The loan approval decisions are based on a trained model for educational purposes only and should not be used for real financial decisions.</p>
</div>""", unsafe_allow_html=True)

# Create tabs for better organization
tab1, tab2 = st.tabs(["📝 Loan Application", "ℹ️ About the System"])

with tab1:
    # Reset all form values if restart was clicked
    if st.session_state.restart_clicked:
        st.session_state.restart_clicked = False  # Reset flag
    
    # Introduction text
    st.markdown("""
    <h2 style="text-align: center; color: var(--primary-purple-dark); margin-bottom: 20px;">
        Smart Loan Application System
    </h2>
    <p style="text-align: center; margin-bottom: 30px; font-size: 1.1rem;">
        Fill out the form below to check your loan eligibility. Our AI system will analyze your information and provide an instant decision.
    </p>
    """, unsafe_allow_html=True)
    
    # Personal Information Section
    st.markdown('<div class="section-card"><h3>👤 Personal Information</h3>', unsafe_allow_html=True)
    
    col1, col2, col3 = st.columns(3)
    with col1:
        gender = st.selectbox("Gender", ["Male", "Female"])
        number_of_dependents = st.number_input("Number of Dependents", min_value=0, max_value=10, value=0, 
                                              help="Number of people dependent on the applicant's income")
    
    with col2:
        marital_status = st.selectbox("Marital Status", ["Married", "Not Married"])
        self_employed = st.selectbox("Self-Employed", ["No", "Yes"],
                                   help="Whether the applicant is self-employed or works for an organization")
    
    with col3:
        education = st.selectbox("Education Level", ["Graduate", "Under Graduate"],
                               help="Higher education status of the applicant")
    
    st.markdown('</div>', unsafe_allow_html=True)
    
    # Financial Details Section
    st.markdown('<div class="section-card"><h3>💰 Financial Details</h3>', unsafe_allow_html=True)
    
    col1, col2, col3 = st.columns(3)
    with col1:
        applicant_income = st.number_input("Monthly Income ($)", min_value=0, value=5000,
                                         help="Applicant's monthly income in dollars")
        credit_history = st.selectbox("Credit History Status", [1, 0], 
                                     format_func=lambda x: "Good Credit History (1)" if x == 1 else "Poor Credit History (0)",
                                     help="1 indicates no existing unsettled loans, 0 indicates having unsettled loans")
    
    with col2:
        coapplicant_income = st.number_input("Co-Applicant's Income ($)", min_value=0,
                                           help="Co-applicant's monthly income in dollars (if applicable)")
        location = st.selectbox("Property Location", ["Urban", "Semiurban", "Rural"],
                              help="The location where the property is situated")
    
    with col3:
        loan_amount = st.number_input("Loan Amount ($)", min_value=0, value=100000,
                                    help="The amount of loan requested in dollars")
        loan_term = st.slider("Loan Term (months)", min_value=12, max_value=360, value=180, step=12,
                            help="Duration of the loan in months")
    
    st.markdown('</div>', unsafe_allow_html=True)
    
    # Summary section with improved visualization
    st.markdown('<div class="section-card"><h3>📊 Application Summary</h3>', unsafe_allow_html=True)
    
    total_income = applicant_income + coapplicant_income
    
    # Calculate monthly payment (simplified calculation)
    interest_rate = 0.05  # Assuming 5% annual interest rate
    monthly_interest = interest_rate / 12
    num_payments = loan_term
    
    # Monthly payment using the loan amortization formula
    if monthly_interest == 0 or num_payments == 0:
        monthly_payment = 0
    else:
        monthly_payment = loan_amount * (monthly_interest * (1 + monthly_interest) ** num_payments) / \
                        ((1 + monthly_interest) ** num_payments - 1)
    
    # Calculate DTI for backend use only (not displayed initially)
    dti = (monthly_payment / total_income) if total_income > 0 else 0
    dti_percent = dti * 100
    
    # Display summary metrics
    col1, col2, col3, col4 = st.columns(4)
    col1.metric("Total Monthly Income", f"${total_income:,}")
    col2.metric("Estimated Monthly Payment", f"${monthly_payment:.2f}")
    col3.metric("Loan Term", f"{loan_term//12} years")
    col4.metric("Debt-to-Income Ratio", f"{dti_percent:.1f}%", 
               delta="-" if dti_percent < 36 else f"{dti_percent - 36:.1f}%",
               delta_color="normal" if dti_percent < 36 else "inverse")
    
    # Add interest rate disclaimer
    st.markdown(f"""
    <div style="font-size: 0.9rem; color: #666; margin-top: 10px; margin-bottom: 20px; background-color: #f8f9fa; padding: 10px; border-radius: 5px;">
        <strong>Note:</strong> Estimated payment based on {interest_rate*100:.1f}% annual interest rate. Actual rates may vary based on credit score and market conditions.
        <br>A healthy debt-to-income ratio is typically below 36%.
    </div>
    """, unsafe_allow_html=True)
    
    st.markdown('</div>', unsafe_allow_html=True)
    
    # Prediction and restart buttons
    col1, col2 = st.columns([3, 1])
    
    with col1:
        predict_button = st.button("🔍 Check Loan Approval Status", use_container_width=True)
    
    with col2:
        restart_button = st.button("🔄 Reset Form", use_container_width=True, 
                                 help="Clear all inputs and start over")
    
    # Handle restart button click
    if restart_button:
        st.session_state.restart_clicked = True
        st.rerun()
    
    def preprocess_input():
        # Convert categorical inputs to numerical format based on encoding reference
        gender_num = 0 if gender == "Male" else 1
        marital_status_num = 0 if marital_status == "Not Married" else 1
        education_num = 0 if education == "Under Graduate" else 1
        self_employed_num = 0 if self_employed == "No" else 1
        credit_history_num = credit_history  # Already numerical (0,1)
        
        # One-Hot Encoding for Location
        location_semiurban = 1 if location == "Semiurban" else 0
        location_urban = 1 if location == "Urban" else 0
        
        # Convert Term from months to years
        term_years = loan_term / 12
        
        # Compute Derived Features - use the same monthly payment calculated above
        debt_to_income = monthly_payment / total_income if total_income > 0 else 0  
        credit_amount_interaction = loan_amount * credit_history_num  # Interaction effect
        income_term_ratio = total_income / term_years if term_years > 0 else 0  # Avoid divide by zero
        
        # Return array with all 16 features
        return np.array([[
            gender_num, marital_status_num, number_of_dependents, education_num, self_employed_num,
            applicant_income, coapplicant_income, loan_amount, credit_history_num,
            total_income, debt_to_income, location_semiurban, location_urban, term_years,
            credit_amount_interaction, income_term_ratio
        ]])
    
    # Display prediction with enhanced visualization
    if predict_button:
        with st.spinner("Processing your application..."):
            st.markdown("""
            <div class="loading-pulse" style="text-align: center; margin: 20px 0;">
                <p style="font-size: 1.1rem;">Analyzing your application data...</p>
            </div>
            """, unsafe_allow_html=True)
            
            input_data = preprocess_input()
            prediction = model.predict(input_data)
            
            # Apply additional rules to override the model in certain cases (backend only)
            manual_rejection = False
            rejection_reason = ""
            
            # Rule-based rejections that override the model
            if total_income < 1500:
                manual_rejection = True
                rejection_reason = "Insufficient total income (minimum $1,500 required)"
            elif dti_percent > 50:
                manual_rejection = True
                rejection_reason = "Debt-to-income ratio too high (exceeds 50%)"
            elif credit_history == 0 and dti_percent > 35:
                manual_rejection = True
                rejection_reason = "Poor credit history combined with high debt-to-income ratio"
            
            # Final decision combines model prediction and manual eligibility checks
            final_approval = (prediction[0] == 1) and not manual_rejection
            
            # Show result with enhanced styling
            if final_approval:
                st.markdown("""
                <div class="result-approved">
                    <h3 style="color: #2E7D32; margin-top: 0;">✅ Loan Approved</h3>
                    <p style="font-size: 1.1rem;">Congratulations! Based on your information, you're eligible for this loan.</p>
                    <p>Our AI model has determined that your application meets our criteria for approval. Here's what happens next:</p>
                    <ol>
                        <li>Verification of the submitted information</li>
                        <li>Final loan terms proposal</li>
                        <li>Document signing and disbursement</li>
                    </ol>
                    <p><em>In a real application, you would receive further instructions on next steps.</em></p>
                </div>
                """, unsafe_allow_html=True)
            else:
                st.markdown(f"""
                <div class="result-rejected">
                    <h3 style="color: #C62828; margin-top: 0;">❌ Loan Not Approved</h3>
                    <p style="font-size: 1.1rem;">Unfortunately, based on your current information, we cannot approve your loan application.</p>
                    <p><strong>Potential factors affecting the decision:</strong></p>
                    <ul>
                        <li>{rejection_reason if rejection_reason else "The combination of factors in your application does not meet our current criteria"}</li>
                        <li>Income to loan amount ratio may be insufficient</li>
                        <li>Credit history concerns</li>
                    </ul>
                    <p><strong>Suggestions for improvement:</strong></p>
                    <ul>
                        <li>Consider improving your credit score</li>
                        <li>Reduce existing debt before reapplying</li>
                        <li>Apply with a co-applicant with higher income</li>
                        <li>Request a lower loan amount or longer term</li>
                    </ul>
                </div>
                """, unsafe_allow_html=True)
    
    # Add disclaimer at the bottom of tab1 as well
    st.markdown("""<div class="footer-disclaimer">
        <p><strong>Educational Project Disclaimer:</strong> This application is a prototype created to demonstrate machine learning model deployment and is not an actual financial service. The loan approval decisions are based on a trained model for educational purposes only and should not be used for real financial decisions.</p>
        <p>© 2025 SmartLoanAI - Machine Learning Showcase Project</p>
    </div>""", unsafe_allow_html=True)

with tab2:
    # Add custom CSS to make font sizes consistent
    st.markdown("""
    <style>
        /* Make all text in the About tab the same size */
        [data-testid="stAppViewContainer"] .stTabs [aria-label="About the System"] p,
        [data-testid="stAppViewContainer"] .stTabs [aria-label="About the System"] li {
            font-size: 16px !important;
            line-height: 1.5 !important;
        }
        
        /* Main container styling */
        .about-container {
            background-color: #f8f9fa;
            border-radius: 10px;
            padding: 20px;
            margin-bottom: 20px;
        }
        
        /* Section styling */
        .about-section {
            margin-bottom: 25px;
        }
        
        /* Section headers */
        .section-header {
            color: #1e3a8a;
            font-size: 20px;
            font-weight: 600;
            margin-bottom: 10px;
            border-bottom: 2px solid #e5e7eb;
            padding-bottom: 5px;
        }
        
        /* Regular text */
        .about-text {
            font-size: 16px;
            line-height: 1.6;
            color: #374151;
        }
        
        /* Metrics card container */
        .metrics-container {
            display: flex;
            flex-wrap: wrap;
            gap: 15px;
            margin: 15px 0;
        }
        
        /* Individual metric card */
        .metric-card {
            background-color: white;
            border-radius: 8px;
            padding: 15px;
            min-width: 120px;
            box-shadow: 0 2px 4px rgba(0,0,0,0.05);
            flex: 1;
            text-align: center;
        }
        
        /* Metric value */
        .metric-value {
            font-size: 22px;
            font-weight: 600;
            color: #2563eb;
        }
        
        /* Metric label */
        .metric-label {
            font-size: 14px;
            color: #6b7280;
            margin-top: 5px;
        }
        
        /* Footer styling */
        .footer-disclaimer {
            background-color: #f3f4f6;
            border-radius: 8px;
            padding: 15px;
            margin-top: 30px;
            border-left: 4px solid #9ca3af;
            font-size: 14px;
            color: #4b5563;
        }
        
        /* Author bio section */
        .author-bio {
            display: flex;
            align-items: center;
            gap: 15px;
            background-color: white;
            border-radius: 8px;
            padding: 15px;
            margin: 20px 0;
            box-shadow: 0 2px 4px rgba(0,0,0,0.05);
        }
        
        /* Author image placeholder */
        .author-image {
            width: 60px;
            height: 60px;
            border-radius: 50%;
            background-color: #e5e7eb;
            display: flex;
            align-items: center;
            justify-content: center;
            color: #9ca3af;
            font-size: 20px;
            font-weight: bold;
        }
    </style>
    """, unsafe_allow_html=True)
    
    # Main content container
    st.markdown('<div class="about-container">', unsafe_allow_html=True)
    
    # System overview section
    st.markdown('<div class="about-section">', unsafe_allow_html=True)
    st.markdown('<h2 class="section-header">About the Loan Approval System</h2>', unsafe_allow_html=True)
    st.markdown(
        '<p class="about-text">Our AI-powered system evaluates loan applications using machine learning and '
        'industry-standard criteria. It analyzes your financial information, credit history, and loan requirements '
        'to provide fast, objective loan decisions.</p>', unsafe_allow_html=True
    )
    st.markdown('</div>', unsafe_allow_html=True)
    
    # Model information section
    st.markdown('<div class="about-section">', unsafe_allow_html=True)
    st.markdown('<h2 class="section-header">About the ML Model</h2>', unsafe_allow_html=True)
    st.markdown(
        '<p class="about-text">The machine learning model powering this system is a Decision Tree classifier, '
        'which outperformed several alternatives including KNN, Random Forest, Logistic Regression, and Support '
        'Vector Machine in our testing phase. The model was refined using Cost Complexity Pruning (CCP) to identify '
        'the optimal alpha value, preventing overfitting while maintaining high predictive accuracy.</p>', 
        unsafe_allow_html=True
    )
    st.markdown('</div>', unsafe_allow_html=True)
    
    # Performance metrics section with cards
    st.markdown('<div class="about-section">', unsafe_allow_html=True)
    st.markdown('<h2 class="section-header">Model Performance Metrics</h2>', unsafe_allow_html=True)
    
    # Metrics cards using HTML for better styling
    st.markdown(
        '<div class="metrics-container">'
        '  <div class="metric-card">'
        '    <div class="metric-value">83.61%</div>'
        '    <div class="metric-label">Accuracy</div>'
        '  </div>'
        '  <div class="metric-card">'
        '    <div class="metric-value">80.77%</div>'
        '    <div class="metric-label">Precision</div>'
        '  </div>'
        '  <div class="metric-card">'
        '    <div class="metric-value">100.00%</div>'
        '    <div class="metric-label">Recall</div>'
        '  </div>'
        '  <div class="metric-card">'
        '    <div class="metric-value">89.36%</div>'
        '    <div class="metric-label">F1 Score</div>'
        '  </div>'
        '</div>',
        unsafe_allow_html=True
    )
    
    # Link to documentation/more info
    st.markdown(
        '<p class="about-text">For more information about the modeling process (from loading the dataset to fine-tuning '
        'the model), check here: <a href="https://github.com/ifiecas/bankloan2" target="_blank" style="color: #2563eb;">https://github.com/ifiecas/bankloan2</a></p>',
        unsafe_allow_html=True
    )
    
    # YouTube video section
    st.markdown('<h2 class="section-header">Brief Explanation</h2>', unsafe_allow_html=True)
    st.markdown('<p class="about-text">Watch this video for a brief explanation of the assessment:</p>', unsafe_allow_html=True)
    
    # YouTube embed with responsive container
    st.markdown("""
    <div style="position: relative; padding-bottom: 56.25%; height: 0; overflow: hidden; margin-bottom: 20px;">
        <iframe 
            style="position: absolute; top: 0; left: 0; width: 100%; height: 100%;" 
            src="https://www.youtube.com/embed/y88GidhkAE8?si=iesfB084u4qrtPB_" 
            title="Assessment Explanation" 
            frameborder="0" 
            allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" 
            allowfullscreen>
        </iframe>
    </div>
    """, unsafe_allow_html=True)
    
    st.markdown('</div>', unsafe_allow_html=True)
    
    # Author section with profile
    st.markdown('<div class="about-section">', unsafe_allow_html=True)
    st.markdown('<h2 class="section-header">Behind the Build</h2>', unsafe_allow_html=True)
    
    st.markdown(
        '<div class="author-bio">'
        '  <div class="author-image">IF</div>'
        '  <div>'
        '    <p style="margin: 0; font-weight: 600; color: #1f2937;">Ivy Fiecas-Borjal</p>'
        '    <p style="margin: 0; font-size: 14px; color: #6b7280;">Building with AI & ML | Biz Dev in Tech</p>'
        '    <p style="margin-top: 5px; font-size: 14px;">'
        '      <a href="https://ifiecas.com/" target="_blank" style="color: #2563eb; text-decoration: none;">Visit Portfolio</a>'
        '    </p>'
        '  </div>'
        '</div>',
        unsafe_allow_html=True
    )
    



    st.markdown('<p class="about-text">Inspired by an assessment in BCO6008 Predictive Analytics class in Victoria University (Melbourne) with Dr. Omid Ameri Sianaki. Enjoyed doing this and learned a lot! 😊</p>', unsafe_allow_html=True)
    st.markdown('</div>', unsafe_allow_html=True)
    
    # Disclaimer footer
    st.markdown("""<div class="footer-disclaimer">
        <p><strong>Educational Project Disclaimer:</strong> This application is a prototype created to demonstrate machine learning model deployment and is not an actual financial service. The loan approval decisions are based on a trained model for educational purposes only and should not be used for real financial decisions.</p>
        <p>© 2025 SmartLoanAI - Machine Learning Showcase Project</p>
    </div>""", unsafe_allow_html=True)