SmartLoanAI / app.py
ifiecas's picture
Update app.py
42691c2 verified
raw
history blame
10.2 kB
import streamlit as st
import joblib
import numpy as np
from huggingface_hub import hf_hub_download
# Page configuration
st.set_page_config(
page_title="Loan Approval System",
page_icon="🏦",
layout="centered",
initial_sidebar_state="collapsed"
)
# Custom CSS for styling with the specified color theme
st.markdown("""
<style>
/* Color Theme */
:root {
--primary-purple: #7950F2;
--primary-purple-light: #9775F3;
--primary-purple-dark: #5F3DC4;
--complementary-orange: #FF5E3A;
--complementary-orange-light: #FF8A6C;
--light-gray: #F8F9FA;
--dark-gray: #343A40;
}
/* Main containers */
.main .block-container {
padding: 2rem;
border-radius: 10px;
background-color: white;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
}
/* Font family */
body, .stMarkdown, p, h1, h2, h3, h4, h5, h6, .stButton, .stSelectbox, .stNumberInput {
font-family: 'Helvetica', 'Arial', sans-serif !important;
}
/* Headers */
h1, h2, h3 {
color: var(--primary-purple-dark);
}
/* Custom cards for sections */
.section-card {
background-color: var(--light-gray);
border-radius: 8px;
padding: 1.5rem;
margin-bottom: 1.5rem;
border-left: 4px solid var(--primary-purple);
}
/* Button styling */
.stButton > button {
background-color: var(--primary-purple);
color: white;
border: none;
border-radius: 5px;
padding: 0.5rem 1rem;
font-weight: bold;
width: 100%;
transition: all 0.3s;
}
.stButton > button:hover {
background-color: var(--primary-purple-dark);
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
/* Result styling */
.result-approved {
background-color: #E8F5E9;
border-left: 4px solid #4CAF50;
padding: 1rem;
border-radius: 5px;
margin-top: 1rem;
}
.result-rejected {
background-color: #FFEBEE;
border-left: 4px solid #F44336;
padding: 1rem;
border-radius: 5px;
margin-top: 1rem;
}
/* Input widgets */
.stNumberInput, .stSelectbox {
margin-bottom: 1rem;
}
/* Footer */
.footer {
text-align: center;
margin-top: 2rem;
padding-top: 1rem;
border-top: 1px solid #EEEEEE;
font-size: 0.8rem;
color: #666666;
}
/* Divider */
.divider {
border-top: 1px solid #EEEEEE;
margin: 1.5rem 0;
}
/* Badge */
.badge {
display: inline-block;
background-color: var(--complementary-orange);
color: white;
padding: 0.25rem 0.5rem;
border-radius: 4px;
font-size: 0.8rem;
margin-left: 0.5rem;
}
</style>
""", unsafe_allow_html=True)
# App header with logo
col1, col2 = st.columns([1, 5])
with col1:
st.markdown('<div style="text-align: center; padding: 10px;"><span style="font-size: 40px;">🏦</span></div>', unsafe_allow_html=True)
with col2:
st.title("AI-Powered Loan Approval System")
st.markdown('<p style="color: #666;">Fast and reliable loan approval decisions</p>', unsafe_allow_html=True)
# Load the trained model from Hugging Face
@st.cache_resource
def load_model():
model_path = hf_hub_download(repo_id="ifiecas/LoanApproval-DT-v1.0", filename="best_pruned_dt.pkl")
return joblib.load(model_path)
model = load_model()
# Create tabs for better organization
tab1, tab2 = st.tabs(["Loan Application", "About the System"])
with tab1:
# Personal Information Section
st.markdown('<div class="section-card"><h3>Personal Information</h3>', unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
gender = st.selectbox("Gender", ["Male", "Female"])
education = st.selectbox("Education Level", ["Graduate", "Under Graduate"])
with col2:
marital_status = st.selectbox("Marital Status", ["Married", "Not Married"])
number_of_dependents = st.number_input("Number of Dependents", min_value=0, max_value=10, value=0)
self_employed = st.selectbox("Self-Employed", ["No", "Yes"])
st.markdown('</div>', unsafe_allow_html=True)
# Financial Details Section
st.markdown('<div class="section-card"><h3>Financial Details</h3>', unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
applicant_income = st.number_input("Monthly Income ($)", min_value=0, value=5000)
loan_amount = st.number_input("Loan Amount ($)", min_value=0, value=100000)
credit_history = st.selectbox("Credit History Status", [1, 0],
format_func=lambda x: "No existing unsettled loans (1)" if x == 1 else "Have unsettled loans (0)")
with col2:
coapplicant_income = st.number_input("Co-Applicant's Income ($)", min_value=0)
loan_term = st.slider("Loan Term (months)", min_value=12, max_value=360, value=180, step=12)
location = st.selectbox("Property Location", ["Urban", "Semiurban", "Rural"])
st.markdown('</div>', unsafe_allow_html=True)
# Summary section
st.markdown('<div class="section-card"><h3>Application Summary</h3>', unsafe_allow_html=True)
total_income = applicant_income + coapplicant_income
col1, col2, col3 = st.columns(3)
col1.metric("Total Income", f"${total_income:,}")
col2.metric("Loan Amount", f"${loan_amount:,}")
col3.metric("Loan Term", f"{loan_term//12} years")
# Calculate debt-to-income ratio
dti = (loan_amount / total_income) if total_income > 0 else 0
dti_percent = dti * 100
# Show important metrics
st.markdown(f"<p>Debt-to-Income Ratio: <strong>{dti_percent:.1f}%</strong></p>", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Prediction button with enhanced styling
st.markdown('<div style="padding: 1.5rem 0;">', unsafe_allow_html=True)
predict_button = st.button("Check Loan Approval Status")
st.markdown('</div>', unsafe_allow_html=True)
def preprocess_input():
# Convert categorical inputs to numerical format based on encoding reference
gender_num = 0 if gender == "Male" else 1
marital_status_num = 0 if marital_status == "Not Married" else 1
education_num = 0 if education == "Under Graduate" else 1
self_employed_num = 0 if self_employed == "No" else 1
credit_history_num = credit_history # Already numerical (0,1)
# One-Hot Encoding for Location
location_semiurban = 1 if location == "Semiurban" else 0
location_urban = 1 if location == "Urban" else 0
# Convert Term from months to years
term_years = loan_term / 12
# Compute Derived Features
total_income = applicant_income + coapplicant_income # Sum of incomes
debt_to_income = loan_amount / total_income if total_income > 0 else 0 # Avoid divide by zero
credit_amount_interaction = loan_amount * credit_history_num # Interaction effect
income_term_ratio = total_income / term_years if term_years > 0 else 0 # Avoid divide by zero
# Return array with all 16 features
return np.array([[
gender_num, marital_status_num, number_of_dependents, education_num, self_employed_num,
applicant_income, coapplicant_income, loan_amount, credit_history_num,
total_income, debt_to_income, location_semiurban, location_urban, term_years,
credit_amount_interaction, income_term_ratio
]])
# Display prediction
if predict_button:
with st.spinner("Processing your application..."):
input_data = preprocess_input()
prediction = model.predict(input_data)
# Show result with enhanced styling
if prediction[0] == 1:
st.markdown("""
<div class="result-approved">
<h3 style="color: #2E7D32;">✅ Loan Approved</h3>
<p>Congratulations! Based on your information, you're eligible for this loan.</p>
</div>
""", unsafe_allow_html=True)
else:
st.markdown("""
<div class="result-rejected">
<h3 style="color: #C62828;">❌ Loan Not Approved</h3>
<p>Unfortunately, based on your current information, we cannot approve your loan application.</p>
<p>Consider improving your credit score or applying with a co-applicant with higher income.</p>
</div>
""", unsafe_allow_html=True)
with tab2:
st.markdown("""
<div class="section-card">
<h3>About the Loan Approval System</h3>
<p>This AI-powered system uses advanced machine learning algorithms to determine loan approval eligibility.</p>
</div>
""", unsafe_allow_html=True)
st.markdown("<h4>How it works</h4>", unsafe_allow_html=True)
st.write("The system analyzes various factors including:")
st.markdown("""
- Personal and financial information
- Credit history status
- Loan amount and term
- Income and employment status
""")
st.write("All decisions are made automatically using a trained decision tree model that has learned from thousands of previous loan applications.")
st.markdown('<div class="section-card">', unsafe_allow_html=True)
st.markdown("<h3>Features</h3>", unsafe_allow_html=True)
st.write("Our system provides:")
st.markdown("""
- Instant loan approval decisions
- Transparent evaluation process
- Secure data handling
""")
st.markdown('</div>', unsafe_allow_html=True)
# Footer
st.markdown("""
<div class="footer">
<p>© 2025 AI-Powered Loan Approval System | <a href="#" style="color: #7950F2;">Terms of Service</a> | <a href="#" style="color: #7950F2;">Privacy Policy</a></p>
</div>
""", unsafe_allow_html=True)