Spaces:
Running
Running
import streamlit as st | |
import joblib | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
# Page configuration | |
st.set_page_config( | |
page_title="Loan Approval System", | |
page_icon="🏦", | |
layout="centered", | |
initial_sidebar_state="collapsed" | |
) | |
# Custom CSS for styling with the specified color theme | |
st.markdown(""" | |
<style> | |
/* Color Theme */ | |
:root { | |
--primary-purple: #7950F2; | |
--primary-purple-light: #9775F3; | |
--primary-purple-dark: #5F3DC4; | |
--complementary-orange: #FF5E3A; | |
--complementary-orange-light: #FF8A6C; | |
--light-gray: #F8F9FA; | |
--dark-gray: #343A40; | |
} | |
/* Main containers */ | |
.main .block-container { | |
padding: 2rem; | |
border-radius: 10px; | |
background-color: white; | |
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05); | |
} | |
/* Font family */ | |
body, .stMarkdown, p, h1, h2, h3, h4, h5, h6, .stButton, .stSelectbox, .stNumberInput { | |
font-family: 'Helvetica', 'Arial', sans-serif !important; | |
} | |
/* Headers */ | |
h1, h2, h3 { | |
color: var(--primary-purple-dark); | |
} | |
/* Custom cards for sections */ | |
.section-card { | |
background-color: var(--light-gray); | |
border-radius: 8px; | |
padding: 1.5rem; | |
margin-bottom: 1.5rem; | |
border-left: 4px solid var(--primary-purple); | |
} | |
/* Button styling */ | |
.stButton > button { | |
background-color: var(--primary-purple); | |
color: white; | |
border: none; | |
border-radius: 5px; | |
padding: 0.5rem 1rem; | |
font-weight: bold; | |
width: 100%; | |
transition: all 0.3s; | |
} | |
.stButton > button:hover { | |
background-color: var(--primary-purple-dark); | |
transform: translateY(-2px); | |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); | |
} | |
/* Result styling */ | |
.result-approved { | |
background-color: #E8F5E9; | |
border-left: 4px solid #4CAF50; | |
padding: 1rem; | |
border-radius: 5px; | |
margin-top: 1rem; | |
} | |
.result-rejected { | |
background-color: #FFEBEE; | |
border-left: 4px solid #F44336; | |
padding: 1rem; | |
border-radius: 5px; | |
margin-top: 1rem; | |
} | |
/* Input widgets */ | |
.stNumberInput, .stSelectbox { | |
margin-bottom: 1rem; | |
} | |
/* Footer */ | |
.footer { | |
text-align: center; | |
margin-top: 2rem; | |
padding-top: 1rem; | |
border-top: 1px solid #EEEEEE; | |
font-size: 0.8rem; | |
color: #666666; | |
} | |
/* Divider */ | |
.divider { | |
border-top: 1px solid #EEEEEE; | |
margin: 1.5rem 0; | |
} | |
/* Badge */ | |
.badge { | |
display: inline-block; | |
background-color: var(--complementary-orange); | |
color: white; | |
padding: 0.25rem 0.5rem; | |
border-radius: 4px; | |
font-size: 0.8rem; | |
margin-left: 0.5rem; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# App header with logo | |
col1, col2 = st.columns([1, 5]) | |
with col1: | |
st.markdown('<div style="text-align: center; padding: 10px;"><span style="font-size: 40px;">🏦</span></div>', unsafe_allow_html=True) | |
with col2: | |
st.title("AI-Powered Loan Approval System") | |
st.markdown('<p style="color: #666;">Fast and reliable loan approval decisions</p>', unsafe_allow_html=True) | |
# Load the trained model from Hugging Face | |
def load_model(): | |
model_path = hf_hub_download(repo_id="ifiecas/LoanApproval-DT-v1.0", filename="best_pruned_dt.pkl") | |
return joblib.load(model_path) | |
model = load_model() | |
# Create tabs for better organization | |
tab1, tab2 = st.tabs(["Loan Application", "About the System"]) | |
with tab1: | |
# Personal Information Section | |
st.markdown('<div class="section-card"><h3>Personal Information</h3>', unsafe_allow_html=True) | |
col1, col2 = st.columns(2) | |
with col1: | |
gender = st.selectbox("Gender", ["Male", "Female"]) | |
education = st.selectbox("Education Level", ["Graduate", "Under Graduate"]) | |
with col2: | |
marital_status = st.selectbox("Marital Status", ["Married", "Not Married"]) | |
number_of_dependents = st.number_input("Number of Dependents", min_value=0, max_value=10, value=0) | |
self_employed = st.selectbox("Self-Employed", ["No", "Yes"]) | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Financial Details Section | |
st.markdown('<div class="section-card"><h3>Financial Details</h3>', unsafe_allow_html=True) | |
col1, col2 = st.columns(2) | |
with col1: | |
applicant_income = st.number_input("Monthly Income ($)", min_value=0, value=5000) | |
loan_amount = st.number_input("Loan Amount ($)", min_value=0, value=100000) | |
credit_history = st.selectbox("Credit History Status", [1, 0], | |
format_func=lambda x: "No existing unsettled loans (1)" if x == 1 else "Have unsettled loans (0)") | |
with col2: | |
coapplicant_income = st.number_input("Co-Applicant's Income ($)", min_value=0) | |
loan_term = st.slider("Loan Term (months)", min_value=12, max_value=360, value=180, step=12) | |
location = st.selectbox("Property Location", ["Urban", "Semiurban", "Rural"]) | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Summary section | |
st.markdown('<div class="section-card"><h3>Application Summary</h3>', unsafe_allow_html=True) | |
total_income = applicant_income + coapplicant_income | |
col1, col2, col3 = st.columns(3) | |
col1.metric("Total Income", f"${total_income:,}") | |
col2.metric("Loan Amount", f"${loan_amount:,}") | |
col3.metric("Loan Term", f"{loan_term//12} years") | |
# Calculate debt-to-income ratio | |
dti = (loan_amount / total_income) if total_income > 0 else 0 | |
dti_percent = dti * 100 | |
# Show important metrics | |
st.markdown(f"<p>Debt-to-Income Ratio: <strong>{dti_percent:.1f}%</strong></p>", unsafe_allow_html=True) | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Prediction button with enhanced styling | |
st.markdown('<div style="padding: 1.5rem 0;">', unsafe_allow_html=True) | |
predict_button = st.button("Check Loan Approval Status") | |
st.markdown('</div>', unsafe_allow_html=True) | |
def preprocess_input(): | |
# Convert categorical inputs to numerical format based on encoding reference | |
gender_num = 0 if gender == "Male" else 1 | |
marital_status_num = 0 if marital_status == "Not Married" else 1 | |
education_num = 0 if education == "Under Graduate" else 1 | |
self_employed_num = 0 if self_employed == "No" else 1 | |
credit_history_num = credit_history # Already numerical (0,1) | |
# One-Hot Encoding for Location | |
location_semiurban = 1 if location == "Semiurban" else 0 | |
location_urban = 1 if location == "Urban" else 0 | |
# Convert Term from months to years | |
term_years = loan_term / 12 | |
# Compute Derived Features | |
total_income = applicant_income + coapplicant_income # Sum of incomes | |
debt_to_income = loan_amount / total_income if total_income > 0 else 0 # Avoid divide by zero | |
credit_amount_interaction = loan_amount * credit_history_num # Interaction effect | |
income_term_ratio = total_income / term_years if term_years > 0 else 0 # Avoid divide by zero | |
# Return array with all 16 features | |
return np.array([[ | |
gender_num, marital_status_num, number_of_dependents, education_num, self_employed_num, | |
applicant_income, coapplicant_income, loan_amount, credit_history_num, | |
total_income, debt_to_income, location_semiurban, location_urban, term_years, | |
credit_amount_interaction, income_term_ratio | |
]]) | |
# Display prediction | |
if predict_button: | |
with st.spinner("Processing your application..."): | |
input_data = preprocess_input() | |
prediction = model.predict(input_data) | |
# Show result with enhanced styling | |
if prediction[0] == 1: | |
st.markdown(""" | |
<div class="result-approved"> | |
<h3 style="color: #2E7D32;">✅ Loan Approved</h3> | |
<p>Congratulations! Based on your information, you're eligible for this loan.</p> | |
</div> | |
""", unsafe_allow_html=True) | |
else: | |
st.markdown(""" | |
<div class="result-rejected"> | |
<h3 style="color: #C62828;">❌ Loan Not Approved</h3> | |
<p>Unfortunately, based on your current information, we cannot approve your loan application.</p> | |
<p>Consider improving your credit score or applying with a co-applicant with higher income.</p> | |
</div> | |
""", unsafe_allow_html=True) | |
with tab2: | |
st.markdown(""" | |
<div class="section-card"> | |
<h3>About the Loan Approval System</h3> | |
<p>This AI-powered system uses advanced machine learning algorithms to determine loan approval eligibility.</p> | |
</div> | |
""", unsafe_allow_html=True) | |
st.markdown("<h4>How it works</h4>", unsafe_allow_html=True) | |
st.write("The system analyzes various factors including:") | |
st.markdown(""" | |
- Personal and financial information | |
- Credit history status | |
- Loan amount and term | |
- Income and employment status | |
""") | |
st.write("All decisions are made automatically using a trained decision tree model that has learned from thousands of previous loan applications.") | |
st.markdown('<div class="section-card">', unsafe_allow_html=True) | |
st.markdown("<h3>Features</h3>", unsafe_allow_html=True) | |
st.write("Our system provides:") | |
st.markdown(""" | |
- Instant loan approval decisions | |
- Transparent evaluation process | |
- Secure data handling | |
""") | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Footer | |
st.markdown(""" | |
<div class="footer"> | |
<p>© 2025 AI-Powered Loan Approval System | <a href="#" style="color: #7950F2;">Terms of Service</a> | <a href="#" style="color: #7950F2;">Privacy Policy</a></p> | |
</div> | |
""", unsafe_allow_html=True) |