File size: 10,206 Bytes
143340f
 
 
 
 
651cf86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42691c2
 
 
 
 
651cf86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143340f
651cf86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42691c2
 
651cf86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42691c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
651cf86
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import streamlit as st
import joblib
import numpy as np
from huggingface_hub import hf_hub_download

# Page configuration
st.set_page_config(
    page_title="Loan Approval System",
    page_icon="🏦",
    layout="centered",
    initial_sidebar_state="collapsed"
)

# Custom CSS for styling with the specified color theme
st.markdown("""
<style>
    /* Color Theme */
    :root {
        --primary-purple: #7950F2;
        --primary-purple-light: #9775F3;
        --primary-purple-dark: #5F3DC4;
        --complementary-orange: #FF5E3A;
        --complementary-orange-light: #FF8A6C;
        --light-gray: #F8F9FA;
        --dark-gray: #343A40;
    }
    
    /* Main containers */
    .main .block-container {
        padding: 2rem;
        border-radius: 10px;
        background-color: white;
        box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
    }
    
    /* Font family */
    body, .stMarkdown, p, h1, h2, h3, h4, h5, h6, .stButton, .stSelectbox, .stNumberInput {
        font-family: 'Helvetica', 'Arial', sans-serif !important;
    }
    
    /* Headers */
    h1, h2, h3 {
        color: var(--primary-purple-dark);
    }
    
    /* Custom cards for sections */
    .section-card {
        background-color: var(--light-gray);
        border-radius: 8px;
        padding: 1.5rem;
        margin-bottom: 1.5rem;
        border-left: 4px solid var(--primary-purple);
    }
    
    /* Button styling */
    .stButton > button {
        background-color: var(--primary-purple);
        color: white;
        border: none;
        border-radius: 5px;
        padding: 0.5rem 1rem;
        font-weight: bold;
        width: 100%;
        transition: all 0.3s;
    }
    .stButton > button:hover {
        background-color: var(--primary-purple-dark);
        transform: translateY(-2px);
        box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
    }
    
    /* Result styling */
    .result-approved {
        background-color: #E8F5E9;
        border-left: 4px solid #4CAF50;
        padding: 1rem;
        border-radius: 5px;
        margin-top: 1rem;
    }
    .result-rejected {
        background-color: #FFEBEE;
        border-left: 4px solid #F44336;
        padding: 1rem;
        border-radius: 5px;
        margin-top: 1rem;
    }
    
    /* Input widgets */
    .stNumberInput, .stSelectbox {
        margin-bottom: 1rem;
    }
    
    /* Footer */
    .footer {
        text-align: center;
        margin-top: 2rem;
        padding-top: 1rem;
        border-top: 1px solid #EEEEEE;
        font-size: 0.8rem;
        color: #666666;
    }
    
    /* Divider */
    .divider {
        border-top: 1px solid #EEEEEE;
        margin: 1.5rem 0;
    }
    
    /* Badge */
    .badge {
        display: inline-block;
        background-color: var(--complementary-orange);
        color: white;
        padding: 0.25rem 0.5rem;
        border-radius: 4px;
        font-size: 0.8rem;
        margin-left: 0.5rem;
    }
</style>
""", unsafe_allow_html=True)

# App header with logo
col1, col2 = st.columns([1, 5])
with col1:
    st.markdown('<div style="text-align: center; padding: 10px;"><span style="font-size: 40px;">🏦</span></div>', unsafe_allow_html=True)
with col2:
    st.title("AI-Powered Loan Approval System")
    st.markdown('<p style="color: #666;">Fast and reliable loan approval decisions</p>', unsafe_allow_html=True)

# Load the trained model from Hugging Face
@st.cache_resource
def load_model():
    model_path = hf_hub_download(repo_id="ifiecas/LoanApproval-DT-v1.0", filename="best_pruned_dt.pkl")
    return joblib.load(model_path)

model = load_model()

# Create tabs for better organization
tab1, tab2 = st.tabs(["Loan Application", "About the System"])

with tab1:
    # Personal Information Section
    st.markdown('<div class="section-card"><h3>Personal Information</h3>', unsafe_allow_html=True)
    
    col1, col2 = st.columns(2)
    with col1:
        gender = st.selectbox("Gender", ["Male", "Female"])
        education = st.selectbox("Education Level", ["Graduate", "Under Graduate"])
    
    with col2:
        marital_status = st.selectbox("Marital Status", ["Married", "Not Married"])
        number_of_dependents = st.number_input("Number of Dependents", min_value=0, max_value=10, value=0)
    
    self_employed = st.selectbox("Self-Employed", ["No", "Yes"])
    st.markdown('</div>', unsafe_allow_html=True)
    
    # Financial Details Section
    st.markdown('<div class="section-card"><h3>Financial Details</h3>', unsafe_allow_html=True)
    
    col1, col2 = st.columns(2)
    with col1:
        applicant_income = st.number_input("Monthly Income ($)", min_value=0, value=5000)
        loan_amount = st.number_input("Loan Amount ($)", min_value=0, value=100000)
        credit_history = st.selectbox("Credit History Status", [1, 0], 
                                     format_func=lambda x: "No existing unsettled loans (1)" if x == 1 else "Have unsettled loans (0)")
    
    with col2:
        coapplicant_income = st.number_input("Co-Applicant's Income ($)", min_value=0)
        loan_term = st.slider("Loan Term (months)", min_value=12, max_value=360, value=180, step=12)
        location = st.selectbox("Property Location", ["Urban", "Semiurban", "Rural"])
    
    st.markdown('</div>', unsafe_allow_html=True)
    
    # Summary section
    st.markdown('<div class="section-card"><h3>Application Summary</h3>', unsafe_allow_html=True)
    
    total_income = applicant_income + coapplicant_income
    
    col1, col2, col3 = st.columns(3)
    col1.metric("Total Income", f"${total_income:,}")
    col2.metric("Loan Amount", f"${loan_amount:,}")
    col3.metric("Loan Term", f"{loan_term//12} years")
    
    # Calculate debt-to-income ratio
    dti = (loan_amount / total_income) if total_income > 0 else 0
    dti_percent = dti * 100
    
    # Show important metrics
    st.markdown(f"<p>Debt-to-Income Ratio: <strong>{dti_percent:.1f}%</strong></p>", unsafe_allow_html=True)
    
    st.markdown('</div>', unsafe_allow_html=True)
    
    # Prediction button with enhanced styling
    st.markdown('<div style="padding: 1.5rem 0;">', unsafe_allow_html=True)
    predict_button = st.button("Check Loan Approval Status")
    st.markdown('</div>', unsafe_allow_html=True)
    
    def preprocess_input():
        # Convert categorical inputs to numerical format based on encoding reference
        gender_num = 0 if gender == "Male" else 1
        marital_status_num = 0 if marital_status == "Not Married" else 1
        education_num = 0 if education == "Under Graduate" else 1
        self_employed_num = 0 if self_employed == "No" else 1
        credit_history_num = credit_history  # Already numerical (0,1)
        
        # One-Hot Encoding for Location
        location_semiurban = 1 if location == "Semiurban" else 0
        location_urban = 1 if location == "Urban" else 0
        
        # Convert Term from months to years
        term_years = loan_term / 12
        
        # Compute Derived Features
        total_income = applicant_income + coapplicant_income  # Sum of incomes
        debt_to_income = loan_amount / total_income if total_income > 0 else 0  # Avoid divide by zero
        credit_amount_interaction = loan_amount * credit_history_num  # Interaction effect
        income_term_ratio = total_income / term_years if term_years > 0 else 0  # Avoid divide by zero
        
        # Return array with all 16 features
        return np.array([[
            gender_num, marital_status_num, number_of_dependents, education_num, self_employed_num,
            applicant_income, coapplicant_income, loan_amount, credit_history_num,
            total_income, debt_to_income, location_semiurban, location_urban, term_years,
            credit_amount_interaction, income_term_ratio
        ]])
    
    # Display prediction
    if predict_button:
        with st.spinner("Processing your application..."):
            input_data = preprocess_input()
            prediction = model.predict(input_data)
            
            # Show result with enhanced styling
            if prediction[0] == 1:
                st.markdown("""
                <div class="result-approved">
                    <h3 style="color: #2E7D32;">✅ Loan Approved</h3>
                    <p>Congratulations! Based on your information, you're eligible for this loan.</p>
                </div>
                """, unsafe_allow_html=True)
            else:
                st.markdown("""
                <div class="result-rejected">
                    <h3 style="color: #C62828;">❌ Loan Not Approved</h3>
                    <p>Unfortunately, based on your current information, we cannot approve your loan application.</p>
                    <p>Consider improving your credit score or applying with a co-applicant with higher income.</p>
                </div>
                """, unsafe_allow_html=True)

with tab2:
    st.markdown("""
    <div class="section-card">
        <h3>About the Loan Approval System</h3>
        <p>This AI-powered system uses advanced machine learning algorithms to determine loan approval eligibility.</p>
    </div>
    """, unsafe_allow_html=True)
    
    st.markdown("<h4>How it works</h4>", unsafe_allow_html=True)
    st.write("The system analyzes various factors including:")
    st.markdown("""
    - Personal and financial information
    - Credit history status
    - Loan amount and term
    - Income and employment status
    """)
    
    st.write("All decisions are made automatically using a trained decision tree model that has learned from thousands of previous loan applications.")
    
    st.markdown('<div class="section-card">', unsafe_allow_html=True)
    st.markdown("<h3>Features</h3>", unsafe_allow_html=True)
    st.write("Our system provides:")
    st.markdown("""
    - Instant loan approval decisions
    - Transparent evaluation process
    - Secure data handling
    """)
    st.markdown('</div>', unsafe_allow_html=True)

# Footer
st.markdown("""
<div class="footer">
    <p>© 2025 AI-Powered Loan Approval System | <a href="#" style="color: #7950F2;">Terms of Service</a> | <a href="#" style="color: #7950F2;">Privacy Policy</a></p>
</div>
""", unsafe_allow_html=True)